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Photolysis of unsymmetrical dialkylmercury com- 
pounds, RHgR’, in dilute hydrocarbon solutions 
selectively afforded the mixed dimer R-R’. Stereo- 
chemical studies using endo- and exo-norbornyl- 
mercury derivatives suggest that the observed 
selectivity arises via radical cage effects. 

Intramolecular reductive coupling of alkyl ligands 
is an important mechanism of carbon-carbon bond 
formation in organotransition metal chemistry 
[I]. However, the analogous pathway is not com- 
monly observed in main group chemistry. Note- 
worthy in this regard is the report [2] of the photo- 
chemically induced reductive elimination of 
binaphthyl from trinaphthylboron (eqn. 1). 

BNps LNp-Np + Np-B: (1) 

In this case, the formation of naphthylboryne 
suggests that C-C bond formation may occur by a 
concerted process. Recently, we investigated whether 
a similar process could be induced photochemically 
in the case of unsymmetrical dialkylmercury deriva- 
tives, RHgR’. Organic substituents can be introduced 
on mercury by a variety of means (mercuration, 
solvomercuration, transmetallation), and we antici- 
pated that a selective reductive coupling reaction 
would have synthetic utility. 

A Pyrex tube containing a 0.07 M solution of n- 
propyl-n-butylmercury in tetradecane was irradiated* 
at 300 nm for 60 h. GLC analysis indicated the 
formation of heptane in 1.5% yield while hexane and 
octane were each formed in only 1% yield [3]. 
An analogous experiment using an equimolar mixture 
of di-n-propylmercury and di-n-butylmercury gave 
the reverse result with hexane and octane as predo- 
minant products. In each case, the remaining organic 
products were propane, propylene, butane, and l- 
butene, identified by GLC but not determined 
quantitatively. The bead of metallic mercury could 
be recovered and weighed, and recovery was >90% 
in all reported reactions. 

*Photochemical reactions were carried out in evacuated 
sealed tubes in a Rayonet photochemical reactor. 
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TABLE I. Yield of Dimers from the Photolysis of Dialkyl- 
mercury (mol/mol).a 

Solvent Sampleb Hexane Heptane Octane 

Benzene U 0.01 0.13 0.02 
S 0.07 0.03 0.09 

Decane U 0.03 0.17 0.02 
S 0.08 0.01 0.07 

Tetradecane U 0.01 0.15 0.01 
S 0.06 0.02 0.08 

Nujol U 0.02 0.20 0.01 
S 0.10 <O.Ol 0.12 

Decane u (conc.)C 0.02 0.11 3 0.02 
S (conc.)C 0.10 0.04 0.08 

aAll runs involve 5 ml solution sealed in vacua and irradiated 
at 300 nm for 60 h and 42-45 “C. bSamples marked U 
contained 0.0672 M PrHgBu in indicated solvent; those 
Marked S contained 0.0336 M PrzHg and 0.0336 M BuaHg 
unless otherwise indicated. ‘Samples containing 2 ml of 
solution which were 0.258 M in total mercurial. 

The formation of radicals during the photolysis 
of dialkylmercury compounds is well established [4] . 
Therefore, one explanation for these results involves 
the formation of alkyl radical pairs** (eqn. 2) and 
their subsequent combination in a solvent cage (eqn. 
3) [71. 

R-Hg-R’ SHg” t R., R’. (2) 

R*, R’* -----, R-R’ (3) 

The efficiency of eqn. 3 relative to diffusion of the 
radicals from the cage is expected to increase with 
increasing solvent viscosity [8] . Accordingly, we 
re-ran our photolysis experiment in several hydro- 
carbon solvents as summarized in Table I. The observ- 
ed trend of increasing dimer formation with increas- 
ing viscosity is in qualitative agreement with the 
proposed mechanism. 

In order to gain additional insight into the observ- 
ed reaction we then carried out a stereochemical 
study utilizing errdo- and exo-norbornylmethyl- 
mercury, la and lb [9]. The observed products of 

**An alternative formulation to eon. 2 for the initial frag- 
mentation involves formation of alkylmercuri radicals, 
RHg* [ 51. If such species are involved in unsymmetrical 
dimer formation in the present case, however, they must be 
exceedingly short-lived since the typical lifetime for a caged 
radical pair is 10-a set or shorter [6]. 
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the photolysis in tetradecane were norbornane, 
norbornene, and 2-methylnorbornane as shown in 
eqn. 4. 

&7 ‘Wh I,J 
- & + &J + &J-JHJ 

em, la 
.-- 75% .. 10% -15% 

endo, 1 b 

(4) 

Moreover, using capillary column GLC we could 
determine the isomeric composition of the 2-methyl- 
norbornane formed from Ia (exo:endo = 70:30) and 
from Ib (exo:endo = 58:42) [lo]. In control experi- 
ments carried to co. 70% conversion it was shown by 
GLC that Ia and lb did not interconvert under our 
reaction conditions. Therefore, our results are consis- 
tent with the intermediary of the 2norbornyl radical, 
which apparently has time to partially equilibrate 
between its endo and exo forms prior to C-C bond 
formation [l I] . Such equilibration is expected to 
favor exo-product formation, consistent with our 
results. However, our results also show that stereo- 
chemistry is partially retained, as expected for a 
radical cage process [ 121 . 

The fact that dimer yields are restricted to <20% 
in these studies limits the utility of this approach for 
organic synthesis. The limited yield undoubtedly 
reflects the radical rather than concerted nature of 
the reaction [ 131. It is noteworthy in this regard 
that reductive coupling in transition metals generally 
requires a cis relationship between the alkyl substi- 
tuents [l] ; in contrast, mercurials possess a linear 
coordination geometry. For this reason it seems 
desirable to extend these studies to other main group 
organometallics with geometries more suited to a 
photochemically induced reductive elimination 
process. 
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