Formation of an Azaplatinacyclobutane Compound from a Tertiary Amine by Elimination of an Alkene

IBRAHIM M. AL-NAJJAR

Chemistry Department, College of Science, King Saud University, Riyadh-11451, P.O. Box 2455, Saudi Arabia

Received September 5, 1983

Amines (am) can attack (η -ethene)platinum(II) complexes (1; R = H) to form σ -2-ammonioethanide)platinum(II) compounds [1-5]. In the present work, Mannich base (3), β -dimethylaminopropiophenone was used as amine. ¹⁹⁵ Pt and ³¹ P n.m.r. were used for investigation of the reaction of Mannich base (3) with the olefin complexes (1) in which Y = PPh₃ and PBu₃ⁿ at *ca.* 25 °C, and at *ca.* -40 °C. At low temperature, -40 °C, addition of excess of Mannich base (3) to (1) leads to the complete formation of the zwitterionic σ -compound (2).

This was characterized by ¹⁹⁵Pt and ³¹P n.m.r. spectroscopy which gave respectively a doublet and triplet (1:4:1) with almost equal coupling constants of 4697 and 4684 Hz; this high value is typical of a Pt-P bond *trans* to Cl⁻, enhanced by a *cis* alkyl group [6]. There is no further change at -40 °C either on standing or adding further base. However

on warming the solution, for example to 25 °C, the cyclized compound (4) is produced in 100% yield. Its resonances are identical with ¹⁹⁵ Pt, ¹³C, ¹H and ³¹P n.m.r. spectra obtained earlier from compound (4) formed by addition of NHMe₂ to the starting material (1) [7–9], identified in solution [9] and by elemental analysis [5]. Thus, Panunzi's [7] group has characterized by elemental analysis and osmometry. This suggests the elimination of phenylvinyl-ketone (5), and the production of this compound was

TABLE I. ³¹P N.m.r. and ¹⁹⁵Pt N.m.r., δ and J values in CDCl₃ at ca. 25 °C for R.T. and ca. -40 °C for L.T.

Compound	³¹ P N.m.r. ^a				¹⁹⁵ Pt N.m.r. ^b			
	δppm		¹ JPt–P, Hz		δppm		¹ JPt–P, Hz	
	R.T.	L.T.	R.T.	L.T.	R.T.	L.T.	R.T.	L.T.
$Cis-PtCl_2(\eta-C_2H_4)PPh_3$ (1)	+12.6	+13.2	3262	3280	4038		3262	
$PtCH_2CH_2NMe_2(Cl)PPh_3$ (4)	+10.0	+10.4	4272	_	3866	-		_
$Pt(C\overline{H}_{2}CH_{2}\dot{N}(Me)_{2}CH_{2}CH_{2}COPh)(Cl)_{2}PPh_{3} (2)$	_	+16.0		4684		4261	-	4697
$[PtCl_2(PPh_3)]_2$ (6)	+5.3	-	4100	-	3338	-	4106	_
Trans- $PtCl_2(N)(PPh_3)(7)$	+4.8	-	3590	_	3652	-	3590	_
Cis -PtCl ₂ (η -C ₂ H ₄)P(Bu ⁿ) ₃ (1')	+5.0	+7.0	3040	3050	3998	4036		3057
$PtCH_2CH_2NMe_2(Cl)P(Bu^n)_3$ (4')	-5.5	_	4047	-	3843		4038	-
$Pt(\overline{C}H_2CH_2\overset{\dagger}{N}(Me)_2CH_2CH_2COPh)(Cl)_2P(Bu^n)_3 (2'')$		1.6	-	4350		4206		4375
$[PtCl_2(PBu_3^n)]_2$ (6')	+2.2	+3.4	3820	3742	3404	-	3801	_
Trans-PtCl ₂ (N)P(Bu ⁿ) ₃ (7')	-5.5	-5.7	3344	_	3653	3667	3335	3291

For calibration of δ^{31} P n.m.r. for PPh₃ was -5.4 ppm, down field of 85% H₃PO₄ [11]. ^a δ -values relative to 85% H₃PO₄ for ³¹P n.m.r. (+ upfield, - downfield) and ^brelative to Na₂PtCl₆ (all shifts are negative) for ¹⁹⁵Pt n.m.r. (using JEOL FX 100 MHz). ¹H and ¹³C n.m.r. parameters of cyclic compound are similar to ref. [8]. ¹H n.m.r. of (5), consist of AMX systems for vinyl group, at δ 7.08, d-d, of 10.5 Hz; δ 6.41, d-d of 17.10 Hz and δ 5.93 Hz, d-d of 10.5 Hz; Ph complex at δ 7.3-8.

0020-1693/84/\$3.00

© Elsevier Sequoia/Printed in Switzerland

verified from ¹H and ¹³C spectra (the formation of free Cl^- was shown using silver nitrate).

Earlier work [4, 5] has hinted that ring formation of azaplatinacyclobutane complexes (4) is aided by bulky groups in am, in R and perhaps in Y. In the present work the tertiary amine, Mannich base, behaves like a bulky amine and yields of unstable σ -adducts (2) (only stable in solution at low temperature; when am is pyridine, the σ -product is found only at -40 °C [10]). By warming a solution of (2), cyclization takes place at room temperature and the more stable ring compound is formed (4).

Similar results are obtained when Y is PBu₃ⁿ or SOMe₂, and for the analogous 1-butene and *cis*-2-butene complexes with Y = SOMe₂, and also for (1, Y = PPh₃) and α -(β -dimethylaminopropio)-naphthanone, Mannich base. These reactions provide the first examples of the formation of azaplatina-cyclobutane ring from a tertiary amine by elimination of an alkene. However, quaternary ammonium salts decompose in basic media to give alkenes and tertiary amines.

The reaction is more complicated at 25 °C. Addition of one mol equivalent of the base (3) to $(1, Y = PPh_3)$ in CDCl₃ at *ca.* 25 °C produces a ³¹P n.m.r. spectrum corresponding to a mixture of four species (each of which has been characterized separately), namely, 10% of $[PtCl_2(PPh_3)]_2$ (6), ¹J(Pt-P) 4100 Hz; 10% of *trans*- $[PtCl_2(PPh_3)(N-bonded base(3)]$ (7), ¹J(Pt-P) 3590 Hz; 40% of the cyclized compound (4), ¹J(Pt-P) 4272, and the remaining 40% is the starting compound (1), see Table I. Addition of two equivalents of base (3) yields only two species (as shown by ³¹P n.m.r. and ¹⁹⁵Pt n.m.r.); 70% of the cyclized compound (7).

Similar results are obtained with $(1, Y = PBu_3^n)$ at *ca.* 25 °C (each species has been characterized separately), see Table I.

Acknowledgements

My thanks to Dr. M. Green for helpful discussions and the University of York for hospitality.

References

- 1 A. Panunzi, A. De Renzi, R. Palumbo and G. Paiaro, J. Am. Chem. Soc., 91, 3879 (1969).
- 2 G. Natile, L. Maresca and L. Cattalini, J. Chem. Soc., Dalton Trans., 651 (1977).
- 3 I. M. Al-Najjar and M. Green, J. Chem. Soc., Dalton Trans., 1651 (1979) and references therein.
- 4 M. Green, J. K. K. Sarhan and I. M. Al-Najjar, J. Chem. Soc., Dalton Trans., 1565 (1981).
- 5 J. K. K. Sarhan, M. Green and I. M. Al-Najjar, J. Chem. Soc., Dalton Trans., in press.
- 6 J. F. Nixon and A. Pidcock, Ann. Rev. NMR spectrosc., Table IV, 2, 368 (1969).
- 7 A. De Renzi, A. Panunzi and A. Vitagliano, *Gazz. Chim. Ital.*, 108, 45 (1978).
- 8 I. M. Al-Najjar, M. Green, S. J. S. Kerrison and P. J. Sadler, *J. Chem. Soc. Chem. Comm.*, 311 (1979) and references therein.
- 9 I. M. Al-Najjar, M. Green, J. K. K. Sarhan, I. M. Ismail and P. J. Sadler, *Inorg. Chim. Acta*, 44, L187 (1980) and references therein.
- 10 P. D. Kaplan, P. Schmidt and M. Orchin, J. Am. Chem. Soc., 90, 4175 (1968);
 I. M. Al-Najjar and M. Green, J. Chem. Soc., Chem. Comm., 212 (1977).
- 11 δ^{31} P for PPh₃ + 6 ppm upfield from 85% H₃PO₄: C. A. Tolman, *Chem. Rev.*, 77, 313 (1977).