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Mercury( II) Halide Complexes of Tertiary Phosphines. 
Part VIII. Structural Characterisation of the Mixed Cadmium-Mercury Complex 
I&d(C(-I)2Hg(PPr3 )Z 
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Reaction of equimolar amounts of Cdz14(PPr,)z 
and Hgz14(PPr3jz leads to formation of the complex 
CdHgl, (PPr3 ), . Phosphonts-31 and mercury-l 99 nmr 
studies show both phosphines to be coordinated to 
mercury in solution, and a single crystal X-ray 
analysis confirms the unsymmetrical nature of the 
complex in the solid state also: I, Cd(p-Il, Hg(PPrs)I?. 
The crystals of the complex are monoclinic, space 
group P21/c, with a = 10.694(6), b = 13.794(7), 
c = 22.415(9) A, fl = 96.25(5/O. The structure was 
solved via the and refined 

for 3053 observed diffractometer 
data. The ring is almost planar and 
metal atom is four co-ordinate. The 

and 
large P-Hg-P angle both 
to presence two strong o-donor phoshines and 
to bridging nature of halogen 

The far-i.r. spectrum of complex 

our studies 
and cadmium(I1) have shown 

that o-donating ability of phosphine ligand 
role in determining the solid 

the complexes MXII(PRB), (M = Cd or 
X = or I; n = 1 or In addition, 

nmr coordination shifts indicate mer- 
cm-y-phosphine bond is stronger than the 

bond [9]. The mer- 
cury and are readily 
seen by structural characterisation of mixed- 
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Results and 

with HgIz 
with Hg214(PPr3)2 

the mixed-metal complex CdHgIq(PPrs)2 . 
and mercury-199 nmr 

similar [9] CdHg14(PBu3)2 
and are consistent with the the com- 
plex in solution The 1:2: the 
199Hg nmr 621 f 2 ppm) confirmed 
the two equivalent phosphine ligands 

with a coupling constant the as that 
derived from phosphorus spectrum, 4340 + 

spectrum gave a single 
17.5 + ppm) with 

and although may occur 
at room temperature, no change the spectrum was 

the solution -90 
chemical and J(Hg-P) values are 

from those for forms of 
Pr3PHg12 [ , providing further support that 

more than phosphine ligand is bonded 
mnr data thus strongly point to the 

than sym- 
metrical structure the 
pioneering work of Mann and [lo] 

PPr3 *lHg/ 
1’ ’ I’ ‘PPr 3 

b p, ,I\ /’ 
Cd Hg 

I/ ‘I’ ’ PPr, 

In order to determine whether this apparent dis- 
crepancy is real or whether it arises from a difference 
in phase, we have sought firstly to utilise far-i.r. 
spectroscopy, drawing upon our detailed studies 
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TABLE 1. Far-i.r. Data for Cadmium(H) and Mercury(H) Iodide Complexes of Tertiary Phosphines. 

Complex type Number of examples v(MI)t 

No. bands 
-1 

cm 

v(MI)b 

No. bands cm 
-1 

CdzI4WQh 3 1121 1 175-161 l-2 132-126 

HgzLs(PBs)a 6 1111 1 165-151 l-2 112-90 

CdHgI4(PPrs)2 1 2 172, 147 2 118,87 

TABLE II. Selected Bond Lengths and Angles. 

(a) Bond lengths (A) 

@z-I(l) 
&-I(2) 
N-P(l) 
N-P(2) 
Cd-I(l) 
Cd-I(2) 
Cd-I(3) 

3.077(l) 
3.056(l) 
2.424(4) 
2.410(4) 
2.866(l) 
2.882(l) 
2.705(2) 

Cd-I(4) 
P(l)-C(l1) 
P(l)-C(21) 
P(l)-C(3 1) 
P(2)-C(41) 
P(2)-C(51) 
P(2)-C(61) 

2.705(2) 
1.829(16) 
1.790(14) 
1.850(17) 
1.819(18) 
1.805(20) 
1.826(25) 

(b) Bond angles (“) 

I(l)-HgJ(2) 

I(l)-Hg-P(1) 

I(l)-Hg-P(2) 

I(2)-Hg-P(1) 

I(2)-Hg-P(2) 

P(l)-Hg-P(2) 

I(l)--Cd-I(Z) 

I(l)-Cd-I(3) 

I(l)-Cd-I(4) 

I(2)-Cd-I(3) 

I(2)-Cd-I(4) 

I(3)-Cd-I(4) 

Hg-I(I)-Cd 

88.6(l) 

100.6(l) 

101.4(l) 

99.9(l) 

96.4(l) 

152.8(I) 

96.3(l) 

110.3(l) 

f10.9(1) 

108.3(l) 

110.0(l) 

118.6(l) 

87.2(l) 

Hg-I(2)-Cd 

Hg-P(I)-C(11) 

Hg-P(l)-C(21) 

Hg-P(l)-C(31) 

C(ll)-P(l)-C(21) 

C(lI)--P(l)-C(31) 

C(21)-P(l)-C(31) 

Hg-P(2)-C(41) 

Hg-P(2)-C(51) 

Hg-P(2)-C(61) 

C(41)-P(2)-C(51) 

C(41)-P(2)-C(61) 

C(51)-P(2)-C(61) 

87.3(l) 

111.4(5) 

111.6(5) 

111.5(5) 

107.6(l) 

108.2(l) 
106.3(l) 

113.2(6) 

113.6(l) 

108.3(8) 

107.0(10) 

107.8(12) 

106.6(12) 

of the parent mercury(H) [6, 111 and cadmium(II) 
[8, 121 systems. Solution-phase far-i.r. studies in 
the significant region (50-200 cm-‘) were not 
practical, but for the solid complex a very clear 
pattern of four intense bands was observed: 87, 118, 
147, and 172 cm-‘. There is little doubt that these 
are all metal-iodine modes. The observation of this 
number of bands gives little clue as to the geometrical 
arrangement of the complex, since for both 1 and 2 
six i.r.-active metal-iodide bands are predicted (four 
due to in-plane deformations of the bridge, two aris- 
ing from terminal stretching). However, intuitively 
one expects that the two bridging modes which are 
irAnactive in a strictly centro-symmetric dimer 
(L)IMI,MI(L), would be significantly weaker in the 
i.r. spectrum of 2. This tends to favour 2 as the struc- 
ture. On the other hand, the pattern of the bands and 
their wavenumbers are comparable with either 
arrangement as shown in Table I. 

Consequently we have undertaken a full X-ray 
analysis to elucidate the crystal and molecular 
structure. The results confirm that the unsymmetrical 
arrangement I is retained in the solid state (Fig. 1); 
selected bond lengths and bond angles are given in 
Table II. 

The four-membered ring is approximately planar 
(maximum deviation from the best least-squares plane 
being 0.077 A, Cd) and the angles within the ring 
range from 87.2(l) to 96.3(l)“. Each metal atom is 
four co-ordinate but while the extent of distortion 
from a regular tetrahedral arrangement is not large 
for cadmium, the co-ordination polyhedron of the 
mercury atom is highly irregular. In particular, the 
P-Hg-P angle is found to be 152.8(l)’ and is 
comparable to the value of 158.5(5)” found in the 
monomeric complex HgC12(PEt3)2 [2]. The magni- 
tude of the P-Hg-P angle in the latter complex may 
be attributed to the strong o-donor properties of 



Structure of I~Cd(~-IJ2Hg(PPh3)2 

Fig. 1. Molecular structure of IaCd(p-I)zHg(PPrs)a. 

triethylphosphine and also to the tendency of 
mercury(H) towards linear co-ordination. In con- 
trast, there is far less angular distortion in HgC12- 
(PPha)* (P-Hg-P, 134.1(l)‘) [7], while an almost 
regular tetrahedral arrangement is found in Hg12- 
(PPha)a (P-Hg-P, 108.95(9)‘) [13]. The more 
regular tetrahedral arrangements found in HgX,- 
(PPha), (X = Cl, I) compared with HgC12(PEt3)2 
[2] reflects the weaker u-donor properties of (i) 
PhaP compared with EtaP, and (ii) Cl- compared 
with I-. The far greater distortion about mercury 
in CdHg14(PPra)2, compared with HgIa(PPha)a, 
can be interpreted in terms of the presence of more 
strongly a-donating phosphine ligands and indeed 
the Hg-P distances in the present complex (2.41 O(4), 
2.424(4) A) are significantly shorter than those in 
HgIa(PPh& (2.557(3), 2.574(3) a) [13]. How- 
ever, a contributing factor to the magnitude of the 
P-Hg-P angle must also be the bridging nature of the 
iodine atoms attached to mercury, which will facili- 
tate a stronger interaction between mercury and 
the phosphine ligands. 

The CddIbrrddjng distances of 2.866(l) and 
2.882(l) A lie close to the values found in the 
dimeric complex Cd&(PEta), (2.862(l), 2.878(l) 
a) [8] and the overall geometry about cadmium is 
strikingly similar to that reported for the iodine- 
bridged anion [Cd21,]‘- [14,15]. 

The far-i.r. spectrum of the complex can thus 
be interpreted as in Table I, with v(CdIh at 172 
and 147 cm-‘, and v(CdIzHgh, modes at 118 
and 87 The assignments fully compatible 
with 
121. 

II 

TABLE III. Final Fractional Coordinates (Hg, Cd, I X 105; 
other atoms X 104) with Estimated Standard Deviations in 

Parentheses. 

Atom X Y Z 

& 
Cd 

I(1) 
I(2) 
I(3) 
I(4) 
P(1) 
P(2) 
C(l1) 
C(12) 
C(13) 
C(21) 
C(22) 
C(23) 
C(31) 
C(32) 
C(33) 
C(41) 

~(42) 
C(43) 

C(51) 
C(52) 
C(53) 
C(61) 
C(62) 
C(63) 

38275(5) 
75301(10) 
62807(9) 
53776(10) 
92599(11) 
82386(14) 

3529(4) 
3068(4) 
2200(15) 
1882(19) 

984(28) 
3231(13) 
2062(16) 
1756(19) 
4947(16) 
6017(15) 
7112(17) 
1672(15) 
1614(19) 
452(18) 

2699(24) 
1812(21) 
1408(26) 
4305(23) 
4196(29) 
5330(24) 

15282(4) 
23481(8) 

9624(7) 
28099(9) 
14569(9) 
39229(10) 

127(3) 
2818(3) 
-611(10) 

-1464(14) 
-2118(19) 

474(11) 
1038(12) 
1291(14) 
-649(11) 
-271(12) 
-966(14) 
2490(14) 
1505(15) 
1268(15) 
3916(14) 
3847(17) 
4787(18) 
3128(20) 
3820(23) 
3774(19) 

89433(2) 

90295(5) 
97105(4) 
81895(5) 
84250(5) 
97022(7) 

8290(2) 
9533(2) 
8471(6) 
8056(9) 
8222(11) 
7518(6) 
7378(7) 
6693(8) 
8348(7) 
8069(7) 
8137(8) 
9884(8) 

10081(9) 
10381(8) 
9113(9) 
8597(10) 
8272(11) 

10130(11) 
10513(14) 
11094(11) 

Experimental 

The compound was prepared as described prev- 
iously [lo] from equimolar amounts of (PraP)*- 
CdIz and HgIz in hot ethanol and recrystallised from 
ethanol as colourless needles. 

The nmr spectra were kindly recorded as solu- 
tions in dichloromethane by Dr. B. F. Taylor at the 
University of Sheffield. The 199Hg spectrum was 
obtained at 71.67 MHz using a Bruker 400 MHz 
spectrometer and the “P nmr spectrum was record- 
ed using a JEOL PFT-100 Fourier-transform mm 
spectrometer at 40.48 MHz with proton noise 
decoupling. Chemical shifts are reported on a 6 
scale with respect to external 85% Hap04 or neat 
HgMez, shifts to high field being negative in sign. 

The far-i.r. spectrum was obtained using a Beck- 
mann-RIIC FS-720 spectrometer with the sample 
as a Nujol mull cooled to approximately liquid 
nitrogen temperature. 

Crystallographic Studies 
A crystal of approximate dimensions 0.21 X 

0.19 X 0.25 mm was mounted with its a-axis coinci- 
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dent with the o-axis of a Stije Stadi 2 two circle 
diffractometer. Data were collected using the 
background-w scan-background technique and with 
graphite monochromated MO-K, radiation. 4157 
unique reflections were measured of which 3053 had 
I/a<0 > 3.0 and were used for subsequent analysis. 
Data were corrected for Lorentz, polarisation and 
absorption effects. 

Crystal data 
C1sHJ2CdHg14P2, M = 1141.1, Monoclinic, a = 

10.694(6), b = 13.794(7), c = 22.415(9) 8, fl = 
96.25(5)‘, U = 3286.7 A3, F(OO0) = 2080, space 
group P2,/c, Z = 4, D,,, (by flotation) = 2.29, D, = 
2.31 g cmm3, McX, radiation, h = 0.71069 8, ~(Mo- 
&) = 86.2 cm-‘. 

The structure was solved via the heavy-atom 
method and refined by full-matrix least squares. 
Hydrogen atoms were included in ideal positions 
(C-H, 1.08 A) and given common isotropic 
temperature factors; all other atoms were assigned 
anisotropic thermal parameters. Complex neutral- 
atom scattering factors [ 161 were employed 
throughout the refinement and in the final cycles 
of refinement the weighting scheme w = 1.7507/ 
[a’(F,) + 0.0009(F,)2] was adopted. The converg- 
ed residuals were R = 0.048 and R’ = 0.052. Table 
III lists the final atomic parameters while hydrogen 
positions, thermal parameters, observed and calcu- 
lated structure factors have been deposited and are 
available from the Editor. 
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