Photolysis of Aquopentacyanoferrate(III) in Aqueous Solution in the Presence of *o*-Phenanthroline with Reference to the Photolysis of Nitroprusside

S. E. RONCO and P. J. AYMONINO**

Area de Química Inorgánica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900 La Plata, Republic of Argentina

Received January 10, 1983

Although it is a well-known fact that the initial act of the photochemical decomposition of the nitroprusside ion in aqucous solution at pH 6 gives NO and $[Fe(CN)_5H_2O]^{2^-}$ [1], the subsequent decomposition of the aquopentacyanoferrate(III) ion has not been studied in detail and it is supposed that intermediates are produced by successive hydrolytic stcps, giving $[Fe(H_2O)_6]^{2^+}$ as the final product [2]. Attempts to trap these intermediates with *o*-phenanthroline gave results which were only qualitative and inconclusive [2]. We undertook a study of the photolysis of the $[Fe(CN)_5H_2O]^{2^-}$ ion in aqueous solution in the presence of *o*-phenanthroline to get more information on this reaction.

Irradiation was done at room temperature with light from a medium pressure mercury lamp filtered through Pyrex glass. All chemicals used were reagent grade. Aqueous solutions of $[Fe(CN)_5H_2O]^{2-}$ were prepared by previously described procedures [3]. Solutions for the photolytic work were freshly prepared by further dilution to ca. 10^{-4} M and addition of enough NaCl to give 1.0 M total ionic strength. These solutions were not deoxygenated because the presence of dissolved oxygen produces no change in the photochemical reaction. [Fe(CN)₂- $(o-phen)_2$] was extracted from the reaction mixture with chloroform and the other components were separated with a column of Sephadex G-25. The fractions obtained were analyzed spectrophotometrically (UV-visible) and results showed the presence of $[Fe(CN)_4(o-phen)^{2^-}, [Fe(o-phen)_3]^{2^+}$ and [Fe(CN)₆]³⁻. Electronic spectra reproduced in Figs. 1-5 are representatives of reproducible spectra of reacting solutions obtained under the above conditions.

After brief irradiation, only $[Fe(o-phen)_3]^{3+}$ and $[Fe(CN)_6]^{3-}$ were detected in the solution,

^{*}Author to whom correspondence should be addressed. [†]Member of the Carrera del Investigador Científico,

Fig. 1. Spectral changes observed in a solution of $[Fe(CN)_5-H_2O]^{2-} 5 \times 10^{-4} M$ and $2 \times 10^{-2} M$ in o-phenanthroline irradiated during 5 minutes (----). The spectra of $[Fe(CN)_5H_2O]^{2-}$ (----), $[Fe(CN)_6]^{3-}$ (----) and $[Fe(o-phen)_3]^{3+}$ (---) are also included in an arbitrary scale for the sake of comparison.

Fig. 2. Transformation of $[Fe(o-phen)_3]^{3+}$ into $[Fe(o-phen)_3]^{2+}$ when the irradiation time is increased from 5 to 10 minutes. Characteristic bands of $[Fe(o-phen)_3]^{2+}$ are also reproduced (- - -).

together with unreacted $[Fe(CN)_5H_5O]^{2-}$. Figure 1 reproduces the spectral changes observed in a solution of $[Fe(CN)_5H_2O]^{2-} 5 \times 10^{-4} M$ and $2 \times 10^{-2} M$ in *o*-phenanthroline when irradiated for five minutes. The $[Fe(o-phen)_3]^{3+}$ ion is stable only in acid solution; in neutral solutions it gradually turns into $[Fe(o-phen)_3]^{2+}$ [4]. As UV light accelerates this transformation, this ion is detectable only at a very short irradiation time. Figure 2 shows the transformation of $[Fe(o-phen)_3]^{3+}$ into $[Fe(o-phen)_3]^{2+}$ when the irradiation time is increased to ten minutes. When the solution is irradiated for 15 minutes, the presence of $[Fe(o-phen)_3]^{3+}$ can no longer be detected, and a concentration ratio of 4.75: 1 between

Fig. 3. Successive spectral changes observed in a solution of $[Fe(CN)_5H_2O]^{2-}$ 7 × 10⁻⁴ M and 2 × 10⁻² M in o-phenanthroline irradiated during 10, 15, 20 and 25 minutes.

Fig. 4. Consecutive spectral changes noted in a solution $3 \times 10^{-4} M$ in [Fe(CN)₆]³⁻ and $2 \times 10^{-2} M$ in *o*-phenanthroline when irradiated during 5, 10, 17, 22 and 35 minutes.

 $[Fe(CN)_6]^{3-}$ and $[Fe(o-phen)_3]^{2+}$ is found (Fig. 3). This indicates that the initial stoichiometry for the reaction is the following: $6[Fe(CN)_5H_2O]^{2-} + 3$ o-phen = $5[Fe(CN)_6]^{3-} + [Fe(o-phen)_3]^{3+} + 6H_2O$. The production of $[Fe(o-phen)_3]^{2+}$ as a result of the decomposition of $[Fe(CN)_5H_2O]^{2-}$ is confirmed by photolyzing a solution of nitroprusside in the presence of o-phenanthroline. In this case, after a short irradiation time a slightly soluble red solid of the composition $[Fe(o-phen)_3][Fe(CN)_5NO] \cdot 2H_2O$ is formed. This salt is identical with the product obtained by mixing solutions of $Na_2[Fe(CN)_5NO]$ and $[Fe(o-phen)_3]Cl_2$. Although its properties and structure will be reported separately [5] it should

Fig. 5. Spectral changes observed in a solution of $[Fe(CN)_6]^{4-5} \times 10^{-4} M$ and of *o*-phenanthroline $2 \times 10^{-2} M$ irradiated 5, 8, 10, 12, 15, 19, 25 and 28 minutes.

be noted here that they are similar to those found for $[Fe(bipy)_3][Fe(CN)_5NO]\cdot 4H_2O$ [6]. When the irradiation time of the $[Fe(CN)_5H_2O]^{2-}$ and o-phenanthroline solution is prolonged, the formation of $[Fe(CN)_4o$ -phen]^{2-} and $[Fe(CN)_2(o$ -phen)_2] can be observed, as shown by Fig. 3 [7]. Apparently, the production of these mixed complexes is due to the photolysis of the hexacyanoferrate(III) ion. Figure 4 represents the consecutive spectral changes noted in a solution of ferricyanide and o-phenanthroline when irradiated.

It has been previously reported that photolysis of $[Fe(CN)_6]^{3-}$ gives first either $[Fe(CN)_5H_2O]^{3-}$ and $[Fe(CN)_6]^{4-}$ [8] or only the latter complex [9]. We have been unable to detect the presence of $[Fe(CN)_5H_2O]^{3-}$ in solutions irradiated shortly using nitrosobenzene [10] and N-methylpyrazinium [11] as analytical reagents. The presence of $[Fe(CN)_6]^{4-}$ is established by the spectral changes observed in the irradiated solution.

The irradiation of $[Fe(CN)_6]^{4-}$ in the presence of *o*-phenanthroline shows the successive substitution of cyanide ions giving $[Fe(CN)_5H_2O]^{3-}$ as the first reaction product. The presence of $[Fe(CN)_5H_2O]^{3-}$ can be detected in this case by its reaction with nitrosobenzene and by its characteristic absorption band at 440 nm. Figure 5 reproduces the spectral changes observed in an irradiated solution of $[Fe(CN)_6]^{4--}$ and *o*-phenanthroline. The presence of the mixed complexes with *o*-phenanthroline is also detected when irradiation time is prolonged enough.

Acknowledgements

To CONICET (Programa QUINOR), SUBCYT, and CICPBA, R. Argentina, for financial support. S. E. Ronco thanks a fellowship from CONICET.

References

- 1 J. W. Swinehart and S. K. Wolfe, Inorg. Chem. 14, 1049 (1975).
- 2 V. Balzani, V. Carassiti and R. Soto Loos, Ann. Chim. Rome, 54, 103 (1964).
- 3 J. Espenson and S. Wolenuk, Inorg. Chem., 11, 2034 (1972).
- 4 V. Balzani and V. Carassiti, 'Photochemistry of Coordination Compounds', Academic Press, London, 1970.
- 5 S. E. Ronco, M. E. García Posse, E. O. Piro, E. E. Castellano and P. J. Aymonino, to be published elsewhere.
- 6 M. E. García Posse, O. E. Piro, E. E. Castellano and P. J. Aymonino: a) XXII International Conference on Coordination Chemistry, August 23-27, 1982, Budapest, Hungary (summary); b) XVI Argentine Chemical Congress, Córdoba, R. Argentina, September 24, 1982 (full communication); c) to be published elsewhere.
- 7 A. Schilt, J. Am. Chem. Soc., 82, 3000 (1960).
- 8 J. Legros, C.R., 265, 225 (1967).
 9 L. Moggi, F. Bolletta, V. Balzani and F. Scandola, J. Inorg. Nucl. Chem., 28, 2589 (1966).
- 10 G. Emschwiller, C.R., 247, 1115 (1958).
- 11 J. E. Figard and J. D. Petersen, Inorg. Chem., 17, 1059 (1978).