Complexation of Zn-TPPS₃ by Ethyl Viologen and its Role in Photoredox Processes

ICHIRO OKURA, SHIN KUSUNOKI and SHIGETOSHI AONO

Department of Chemical Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152, Japan

Received April 19, 1983

Photochemical redox systems have been developed for the purpose of solar energy utilization. The systems containing a photosensitizer, an electron donor and an electron carrier have been used to evolve hydrogen from water when a suitable catalyst is present. Metalloporphyrins, as photosensitizers, have been employed extensively in these studies [1, 2]. Recently the formation of complexes between metallo-porphyrins and methyl viologen has been reported [3-5], but the role of the complex formation in photoredox reactions has not yet been clarified. In this letter we describe the complex formation between zinc-meso-tetraphenylporphyrintrisulfonic acid (Zn-TPPS₃) and ethyl viologen, and discuss its role in photoredox processes.

Experimental

All the chemicals, obtained from Wako Pure Chemical Co., were of the highest available purity. Zn-TPPS₃ was synthesized by refluxing TPPS₃ and zinc acetate (molar ratio 1:10) in methonl for 2 h. The sample solution consisted of photosensitizer, ethyl viologen, and mercaptoethanol (RSH) and was deaerated by repeated freeze-pump-thaw cycles. A typical experiment was performed as follows, under anaerobic conditions. To $8.33 \times 10^{-8} M$ of Zn-TPPS₃ and $1.26 \times 10^{-4} M$ of ethyl viologen, 0.21 M of RSH was added. The volume of the mixture was adjusted to 6.0 ml with 0.02 M of Tris-HCl buffer (pH 7.0). In the photolysis with continuous irradiation the sample in a Pyrex cell with a magnetic stirrer was irradiated with light from a 200 W tungsten lamp (from a slide projector). Light of wavelength less than 390 nm was cut off by a Toshiba L-39 filter.

Results and Discussion

When an aqueous solution containing Zn-TPPS₃, ethyl viologen, and RSH was irradiated the growth of the cation radical of ethyl viologen (EtV^*), which has characteristic absorption bands at 395 and 605 nm, was observed. The formation rate of EtV^{+} increased with ethyl viologen concentration and then decreased through a maximum as shown in Fig. 1. This abnormal phenomenon may imply the complexation of Zn-TPPS₃ by ethyl viologen. When Zn-TPPS₃ was mixed with ethyl viologen, the characteristic Soret absorption band (418 nm) decreased with increase in ethyl viologen concentration and a new spectrum appeared, which has a characteristic absorption band at 425 nm through isosbestic point at 422 nm (Fig. 2).

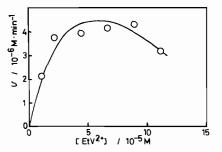


Fig. 1. Dependence of reduction rate on $EtV^{2\ast}$ concentration.

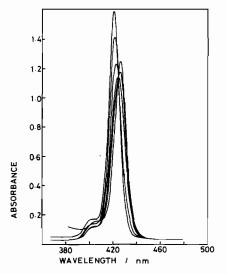


Fig. 2. Spectral change of Zn-TPPS₃ upon the addition of ethyl viologen.

If the complex is formed by the following reaction,

$$Zn$$
-TPPS₃ + EtV²⁺ $\stackrel{K_1}{\longleftrightarrow}$ [Zn-TPPS₃EtV²⁺]

the equilibrium constant, K_1 , is expressed by

$$K_1 = \frac{[complex]}{[Zn-TPPS_3][EtV^{2+}]}$$

© Elsevier Sequoia/Printed in Switzerland

This equation is rewritten as follows by using the initial Zn-TPPS₃ concentration, [Zn-TPPS₃]₀.

$$\frac{[\text{Zn-TPPS}_3]_0}{[\text{complex}]} = 1 + \frac{1}{K_1[\text{EtV}^{2^+}]}$$

As the complex concentration is calculated from the absorbance of the complex, the relation between $[\text{complex}]^{-1}$ and $[\text{EtV}^{2+}]^{-1}$ can be plotted as shown in Fig. 3. The good linear relation between $[\text{com plex}]^{-1}$ and $[\text{EtV}^{2+}]^{-1}$ shows the formation of 1:1 complex of Zn-TPPS₃ and ethyl viologen.

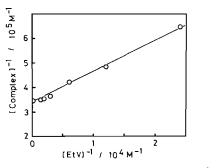


Fig. 3. Relation between $[complex]^{-1}$ and $[EtV^{2+}]^{-1}$.

If the complex is not effective for ethyl viologen photoreduction and only free Zn-TPPS₃ is effective for this reaction, the decrease of the photoreduction rate at the higher ethyl viologen concentration can be explained.

Acknowledgement

We express our appreciation to Professor T. Keii and Professor Y. Ono for stimulating and helpful discussions.

References

- 1 J. R. Darwent, P. Douglas, A. Harriman, G. Porter, and M.-C. Richoux, Coord. Chem. Rev., 44, 83 (1982) and the references therein.
- 2 A. B. P. Lever, B. S. Ramaswamy, and S. Licoccia, J. Photochem., 19, 173 (1982) and the references therein. 3 J. A. Shelnutt, J. Am. Chem. Soc., 103, 4275 (1981).
- 4 M. Rougee, T. Ebbesen, F. Ghetti, and R. V. Bensasson, J. Phys. Chem., 86, 4404 (1982).
- 5 I. Okura, S. Aono, M. Takeuchi, and S. Kusunoki, Bull. Chem. Soc. Jpn., 55, 3637 (1982).