Outer-Sphere Complexes of the $Ru(NH₃)₆³⁺$ Ion: **Stability Measurement using Charge-Transfer Spectra**

D. D. BALL and R. D. CANNON*

School of Chemical Sciences, University of East Anglia, Norwich NR4 7TJ. U.K.

Received June 14,1983

When colourless solutions containing $Ru(NH_3)_{6}^{3+}$ and Γ are mixed, a colour appears due to formation of ion-pairs with strong anion-metal charge-transfer [1]. When certain other anions such as SO_4^2 ⁻ are added, the colour is discharged owing to competing ion-pair formation [2]. This effect provides a method of comparing ion-pair formation constants in media of high ionic strength.

We assume the equilibria

 \sim

$$
Ru(NH_3)_{6}^{3+} + A^{a-} \xleftarrow{K_{A}} Ru(NH_3)_{6}^{3+} \cdot A^{a-}
$$
 (1)

$$
Ru(NH_3)_6^{3+} + B^{b-} \stackrel{AB}{\Longleftarrow} Ru(NH_3)_6^{3+} \cdot B^{b-} \tag{2}
$$

where A^{a-} denotes an anion with a high chargetransfer tendency (e.g. Γ , N₃⁻, S₂O₃²⁻) and B^{b-} denotes a competing anion of low charge-transfer tendency. The absorbance A is thus given by

$$
\frac{A}{\left[\text{Ru}\right]_{\text{T}}l} = \frac{\epsilon_0 + \epsilon_A K_A[A^{\text{a}-}] + \epsilon_B K_B[B^{\text{b}-}] }{1 + K_A[A^{\text{a}-}] + K_B[B^{\text{b}-}]}
$$
(3)

where $\lceil \text{Ru} \rceil_T$ is the total ruthenium concentration, 1 the path length and ϵ_0 , ϵ_4 , ϵ_5 , are the extinction pefficients of $\overline{R}u(NH_2)e^{3+}$ and of the two ion pairs. Absorption by the free anions is neglected.

In our experiments, two sodium salts Na, A and Na_bB were used, and in each set of measurements the total sodium ion concentration was held constant. Thus, in cases where the ion charges a and b were equal, the ionic strength was constant. In other cases the ionic strength varied as shown below. Writing the total sodium ion concentration as c we have

$$
a[Aa-] + b[Bb-] = c \tag{4}
$$

hence the anion concentrations in a set of experiments are $[B^{b-}] = x/b$, $[A^{a-}] = (c - x)/a$, where x varies from 0 to c, and equation 3 becomes

$$
\frac{A}{[Ru]_{T}!} = \frac{\epsilon_0 + \epsilon_a(K_A/a)(c - x) + \epsilon_B(K_B/b)x}{1 + (K_A/a)(c - x) + (K_B/b)x}
$$
(5)

The absorbances when $x = 0$ and $x = c$ are given by $A(0) = (\epsilon_0 + \epsilon_A c K_A/a)(1 + c K_A/a)^{-1}$ [Ru]_Tl and A(c) $=(\epsilon_0 + \epsilon_B c K_B/b)(1 + c K_B/b)^{-1} [Ru]_T$, hence equation (5) leads to

$$
R = \frac{(A - A(0))(c - x)}{(A(c) - A)x} = \frac{1 + cK_B/b}{1 + cK_A/a}
$$
 (6)

For each set of experiments, values of R were calculated, as shown in Table I. For a given anion A^{a-} , values of R are expected to increase as K_R increases. The two series of data, with $A^{a-} = S_2O_3^{2-}$ and N^{3-} , are seen to be satisfactorily consistent, with K_B increasing in the order $CI^- < NO_3^- \sim ClO_3^- < SO_4^2^-$. This agrees with the order of stabilities of the corre-

TABLE I. Ion-Pair Formation Constants K_B^a from Spectrophotometric Measurements^b.

Anion B^b	Anion A^{a-} $Na+/M$	$S_2O_3^{2-d}$ 1.0		N_3 ^{-e} 0.5		log K $Co(NH_3)_6^{3+} + B^{b-}$
		R ^c	$log K_{R}$	R ^c	$log K_R$	
S_0a^{2-} $S_2O_6{}^{2-}$ IO_3^-		0.95 ± 0.06	$1.12^{f,k}$	1.52 ± 0.23	$1.19^{f,m}$	1.97 ^h
				1.43 ± 0.10	$1.09^{\rm f,m}$	
				1.18 ± 0.04	$0.75^{\rm f,n}$	
CO ₃		0.69 ± 0.05	$0.65^{f,1}$	1.16 ± 0.10	0.73 f.n	
NO ₃		0.62 ± 0.04	$0.60^{f,1}$	1.23 ± 0.08	0.77 f, n	0.94 ⁱ
Cl^-		0.48 ± 0.02	0.45 g.	0.96 ± 0.10	0.62 g, n	-0.31^{j}
BrO_3 ⁻				0.78 ± 0.05	$0.48^{\text{f},n}$	
$CH3COO-$				0.58 ± 0.06	0.24 ^{f,n}	

^aSee text, equation 2. bData were recorded with a Cary 14 spectrophotometer, at the wavelengths noted below. T = 25.0 \pm 0.2 $^{\circ}$ C, pH = 7.0, $[Ru]_T = 2.0 \times 10^{-3}$ M, chloride ion present, 6.0 $\times 10^{-3}$ M, in addition to the ions listed. A nitrogen atmosphere was maintained in all experiments to avoid side-reactions (cf. [3]). CSee text, equation 8. Values listed are mean and standard error, from 7-10 readings evenly spaced over the range $x = 0$ to c. $d_{\lambda} = 403$ nm. $e_{\lambda} = 375$ nm. ^fCalculated from the values of R and K_{Cl} listed in the same column. K_{Cl} acculated from data of [1], Table I. $h_I = 1.0 M$, [4]. iCalculated from values at I = 0.05 \tilde{M} [5], assuming the same ionic strength dependence as for Ru(NH₃)₆³⁺ Cl⁻ [1]. ^jI = 1.0 M, [6]. ^kI = 1.5 M. $\mathbf{I} = 1.0 - 1.5 \text{ M}.$ $\mathbf{m}_1 = 0.5 - 0.75 \text{ M}.$ $\mathbf{m}_1 = 0.5 \text{ M}.$

^{*}Author to whom correspondence should be addressed.

sponding complexes of $Co(NH_3)_6^{3+}$, at high ionic **References** strengths, as shown in the Table. Absolute values of K_B can be calculated if one value is already known. We have taken K_B for the Cl⁻ ion pair from the data of Waysbort et al. [1] and thence calculated the other values of K_{B} , at the two sodium ion concentrations used, as shown in Table I. *3*

Acknowledgements

This work was supported by the Science & Engineering Research Council. DBB held an SRC Research *6* Studentship.

- 1 D. Wavsbort, M. Evenor and G. Navon, Znorg. *Chem., 14, 514* (1975).
- J. N. Armor,J. Znorg. *Nucl. Chem., 35,2067 (1973).*
- *J. N.* Armor and H. Taube, Znorg. *Chem., 10, 1570* (1971).
- *4* N. Tanaka and A. Yamada, Z. *Anal. Chem., 224,* 117 (1967).
- M. G. Evans and G. H. Nancollas, *Trans. Faraday Sot., 49,363* (1953).
- V. E. Mironov and V. A. Fedorov, *Zhur. Neorg. Khim.. 7, 2524* (1962).