Outer-Sphere Complexes of the $Ru(NH_3)_6^{3+}$ Ion: Stability Measurement using Charge-Transfer Spectra

D. D. BALL and R. D. CANNON*

School of Chemical Sciences, University of East Anglia, Norwich NR4 7TJ, U.K.

Received June 14, 1983

When colourless solutions containing $\text{Ru}(\text{NH}_3)_6^{3+}$ and I⁻ are mixed, a colour appears due to formation of ion-pairs with strong anion-metal charge-transfer [1]. When certain other anions such as SO_4^{2-} are added, the colour is discharged owing to competing ion-pair formation [2]. This effect provides a method of comparing ion-pair formation constants in media of high ionic strength.

We assume the equilibria

$$\operatorname{Ru}(\operatorname{NH}_{3})_{6}^{3+} + \operatorname{A}^{a-} \underbrace{\overset{K_{A}}{\longleftrightarrow}}_{K_{a}} \operatorname{Ru}(\operatorname{NH}_{3})_{6}^{3+} \cdot \operatorname{A}^{a-}$$
(1)

$$\operatorname{Ru}(\operatorname{NH}_{3})_{6}^{3+} + \operatorname{B}^{b-} \stackrel{\mathsf{N}_{B}}{\longleftrightarrow} \operatorname{Ru}(\operatorname{NH}_{3})_{6}^{3+} \cdot \operatorname{B}^{b-}$$
(2)

where A^{a-} denotes an anion with a high chargetransfer tendency (e.g. I⁻, N₃⁻, S₂O₃²⁻) and B^{b-} denotes a competing anion of low charge-transfer tendency. The absorbance A is thus given by

$$\frac{A}{[Ru]_{T}l} \approx \frac{\epsilon_0 + \epsilon_A K_A [A^{a-}] + \epsilon_B K_B [B^{b-}]}{1 + K_A [A^{a-}] + K_B [B^{b-}]}$$
(3)

where $[Ru]_T$ is the total ruthenium concentration, l is the path length and ϵ_0 , ϵ_A , ϵ_B , are the extinction coefficients of Ru(NH₃)₆³⁺ and of the two ion pairs. Absorption by the free anions is neglected.

In our experiments, two sodium salts Na_aA and Na_bB were used, and in each set of measurements the total sodium ion concentration was held constant. Thus, in cases where the ion charges a and b were equal, the ionic strength was constant. In other cases the ionic strength varied as shown below. Writing the total sodium ion concentration as c we have

$$\mathbf{a}[\mathbf{A}^{\mathbf{a}-}] + \mathbf{b}[\mathbf{B}^{\mathbf{b}-}] = \mathbf{c} \tag{4}$$

hence the anion concentrations in a set of experiments are $[B^{b-}] = x/b$, $[A^{a-}] = (c - x)/a$, where x varies from 0 to c, and equation 3 becomes

$$\frac{\mathbf{A}}{[\mathbf{R}\mathbf{u}]_{\mathbf{T}}\mathbf{l}} = \frac{\epsilon_0 + \epsilon_{\mathbf{a}}(\mathbf{K}_{\mathbf{A}}/\mathbf{a})(\mathbf{c} - \mathbf{x}) + \epsilon_{\mathbf{B}}(\mathbf{K}_{\mathbf{B}}/\mathbf{b})\mathbf{x}}{\mathbf{l} + (\mathbf{K}_{\mathbf{A}}/\mathbf{a})(\mathbf{c} - \mathbf{x}) + (\mathbf{K}_{\mathbf{B}}/\mathbf{b})\mathbf{x}}$$
(5)

The absorbances when x = 0 and x = c are given by $A(0) = (\epsilon_0 + \epsilon_A c K_A/a)(1 + c K_A/a)^{-1} [Ru]_T l$ and A(c) $= (\epsilon_0 + \epsilon_B c K_B/b)(1 + c K_B/b)^{-1} [Ru]_T l$, hence equation (5) leads to

$$R = \frac{(A - A(0))(c - x)}{(A(c) - A)x} = \frac{1 + cK_B/b}{1 + cK_A/a}$$
(6)

For each set of experiments, values of R were calculated, as shown in Table I. For a given anion A^{a-} , values of R are expected to increase as K_B increases. The two series of data, with $A^{a-} = S_2O_3^{2-}$ and N^{3-} , are seen to be satisfactorily consistent, with K_B increasing in the order $CI^- < NO_3^- ~ CIO_3^- < SO_4^{2-}$. This agrees with the order of stabilities of the corre-

TABLE I. Ion-Pair Formation Constants K_B^a from Spectrophotometric Measurements^b.

Anion B ^b	Anion A ^{a-} Na ⁺ /M	S ₂ O ₃ ^{2-d} 1.0		N ₃ ^{- e} 0.5		log K Co(NH ₃)6 ³⁺ + B ^{b-}
		R ^c	log K _B	R ^c	log K _B	
S04 ²⁻		0.95 ± 0.06	1.12 ^{f, k}	1.52 ± 0.23	1.19 ^{f,m}	1.97 ^h
$S_2O_6^{2-}$				1.43 ± 0.10	1.09 ^{f, m}	
IO3 ⁻				1.18 ± 0.04	0.75 ^{f,n}	
CIO ₃ -		0.69 ± 0.05	0.65 ^{f,1}	1.16 ± 0.10	0.73 ^{f,n}	
NO ₃ ⁻		0.62 ± 0.04	$0.60^{f,1}$	1.23 ± 0.08	0.77 ^{f,n}	0.94 ⁱ
Cl-		0.48 ± 0.02	0.45 ^{g,1}	0.96 ± 0.10	0.62 ^{g, n}	-0.31 ^j
BrO ₃ ⁻				0.78 ± 0.05	0.48 ^{f, n}	
CH3COO				0.58 ± 0.06	0.24 ^{f,n}	

^aSee text, equation 2. ^bData were recorded with a Cary 14 spectrophotometer, at the wavelengths noted below. $T = 25.0 \pm 0.2$ ^oC, pH = 7.0, $[Ru]_T = 2.0 \times 10^{-3}$ M, chloride ion present, 6.0×10^{-3} M, in addition to the ions listed. A nitrogen atmosphere was maintained in all experiments to avoid side-reactions (cf. [3]). ^cSee text, equation 8. Values listed are mean and standard error, from 7–10 readings evenly spaced over the range x = 0 to c. ^d λ = 403 nm. ^e λ = 375 nm. ^fCalculated from the values of R and K_{CI} listed in the same column. ^gCalculated from data of [1], Table I. ^hI = 1.0 M, [4]. ⁱCalculated from values at I = 0.05 M [5], assuming the same ionic strength dependence as for Ru(NH₃)₆³⁺·Cl⁻ [1]. ^jI = 1.0 M, [6]. ^kI = 1.5 M. ^lI = 1.0–1.5 M. ^mI = 0.5–0.75 M. ⁿI = 0.5 M.

^{*}Author to whom correspondence should be addressed.

sponding complexes of $Co(NH_3)_6^{3+}$, at high ionic strengths, as shown in the Table. Absolute values of K_B can be calculated if one value is already known. We have taken K_B for the Cl⁻ ion pair from the data of Waysbort *et al.* [1] and thence calculated the other values of K_B , at the two sodium ion concentrations used, as shown in Table I.

Acknowledgements

This work was supported by the Science & Engineering Research Council. DBB held an SRC Research Studentship.

References

- 1 D. Waysbort, M. Evenor and G. Navon, *Inorg. Chem.*, 14, 514 (1975).
- 2 J. N. Armor, J. Inorg. Nucl. Chem., 35, 2067 (1973).
- 3 J. N. Armor and H. Taube, Inorg. Chem., 10, 1570 (1971).
- 4 N. Tanaka and A. Yamada, Z. Anal. Chem., 224, 117 (1967).
- 5 M. G. Evans and G. H. Nancollas, Trans. Faraday Soc., 49, 363 (1953).
- 6 V. E. Mironov and V. A. Fedorov, Zhur. Neorg. Khim., 7, 2524 (1962).