Phosphorus-31 and Mercury-199 NMR Measurements of Cationic Mercury Phosphite Complexes

PAUL PERINGER⁺ and DAGMAR OBENDORF

Institut für Anorganische und Analytische Chemie der Universität Innsbruck, Innrain 52a, 6020 Innsbruck, Austria

Received May 16, 1983

Whilst phosphine coordination compounds of mercury of the type $[HgX_2(PR_3)_n]$, $[HgX(PR_3)_n]^+$ and $[Hg(PR_3)_n]^{2+}$ have received much study in the recent years [1-10], there is only one report on mercury tertiary phosphite complexes, concerning $[HgX_2\{P(OR)_3\}_n]$ with X = Cl, I; R = Et and n = 1, 2 [11]. We report here on cationic mercury phosphite complexes $[Hg(P(OR)_3)_n]^{2+}$, n = 1-4.

Results and Discussion

Mercury(II)trifluoromethanesulfonate (which was preferred to mercury(II)perchlorate in view of the explosive nature of Hg(ClO₄)₂ in contact with oxidising materials) and tertiary phosphites (P(OMe)₃ and P(OEt)₃) in the stoichiometry 1:1 form coordination complexes [HgP(OR)₃]²⁺ in dichloromethane. This and the other complexes were identified according to its ³¹P and ¹⁹⁹Hg NMR spectra (vide infra). The existence of an 1:1 adduct is in contrast to the reaction of tertiary phosphines with Hg(ClO₄)₂, where no evidence for the formation of 1:1 adducts was observed [10].

Addition of a second equivalent of $P(OR)_3$ leads to $[Hg\{P(OR)_3\}_2]^{2+}$. Such species were already inferred from electrochemical measurements [12].

Upon addition of one further equivalent of P- $(OR)_3$, $[Hg{P(OR)_3}_3]^{2+}$ is formed, which underwent partial disproportionation into the bis and tetrakis complex according to eqn. 1:

$$2[Hg{P(OR)_{3}}_{3}]^{2^{+}} =$$

$$[Hg{P(OR)_{3}}_{2}]^{2^{+}} + [Hg{P(OR)_{3}}_{4}]^{2^{+}}$$
(1)

This disproportionation is not observed for the corresponding phosphine complexes $[Hg(PR_3)_3]^{2+}$ [10]; cationic silver(I) phosphite complexes $[Ag\{P(O-R)_3\}_3]^+$ have however been reported to disproportionate in the above way [13]. Integration of the respective signals leads to the equilibrium constants $K = ([Hg\{P(OR)_3\}_2]^{2+}[Hg\{P(OR)_3\}_4]^{2+})/[Hg\{P(O-R)_3\}_3]^{2+} = 0.01 (R = Me) and K = 0.1 (R = Et).$

In solutions of the stoichiometry $Hg^{2+}:P(OR)_3 =$ 1:4 the complex $[Hg\{P(OR)_3\}_4]^{2+}$ is formed. No complexes $[Hg{P(OR)_3}_n]^{2+}$ with n > 4 could be detected.

Table I presents the ³¹P and ¹⁹⁹Hg NMR parameters of the new complexes. The one bond mercury-phosphorus coupling of the complexes [Hg- $P(OR)_3$]²⁺ represent the largest ¹J(¹⁹⁹Hg, ³¹P) and,

TABLE I. NMR Parameters of $[Hg{P(OR)_3}_n](O_3SCF_3)_2^a$.

R	n	δ(³¹ P)	δ(¹⁹⁹ Hg)	¹ J(¹⁹⁹ Hg, ³¹ P)	T,K
Ме	1	98.2	826	17528	253
Me	2	120.4	1041	11123	253
Me	3	132.3	1722	6756	173
Me	4	117.8	1933	4410	173
Et	1	90.8	823	17323	253
Et	2	115.0	1031	10645	253
Et	3	128.8	1720	6630	173
Et	4	111.5	1965	4308	173
Бt	+	111.5	1903	+ 500	1/5

^a0.25 mmol/cm⁻³ CH₂Cl₂, in ppm to high frequency of 85% H₃PO₄ or aqueous Hg(ClO₄)₂ (2 mmol HgO (cm⁻³ 60% HClO₄); coupling constants in Hz.

as far as we are aware, the largest ${}^{1}J(M,P)$ values reported so far. This should be associated with very short Hg-P bonding distances [14]. The Hg-P one bond coupling constants thus cover the remarkable range from 143 Hz (for $[Hg(P(O)(OEt)_2)_2(PPh_3)_2]$ [15]) to 17528 Hz for $[HgP(OMe)_3]^{2+}$, *i.e.* more than two orders of magnitude. The Hg-P coupling of $[Hg{P(OR)_3}_n]^{2+}$ decreases with increasing n, as has been observed for $[Hg(PR_3)_n]^{2+}$ [10] and this is attributed to the s character of the HgP bond [16]. ¹H NMR spectra of [Hg(P(OMe)₃)₂]²⁺ exhibit a pseudo triplet pattern due to virtual coupling in the $AA'X_9X_9'$ spin system, this indicating a large two bond phosphorus-phosphorus coupling. More accurate [16] estimates of ²J(³¹P, ³¹P) were expected from the asymmetric complexes [HgP(OR)₃P(O- R'_{3} ²⁺ containing two chemically non-equivalent phosphorus atoms, allowing straightforward analysis of the spectrum. The compound [HgP(OMe)₃P(O-Et),]²⁺ is formed by synproportionation of the respective symmetric compounds [eqn. 2):

$$[Hg{P(OMe)_{3}}_{2}]^{2+} + [Hg{P(OEt)_{3}}_{2}]^{2+} \Longrightarrow 2[HgP(OMe)_{3}P(OEt)_{3}]^{2+} \qquad (2)$$

A near statistical distribution of the species (eqn. 2) arises at equilibrium ($K \approx 4$). The two bond coupling ²J(P,P) of the asymmetric complex has been determined to be 567 Hz and is smaller than for [Hg{P-(O)(OMe)_2}] (700 Hz in CDCl_3) [17].

The AB spectrum has been assigned using ${^{1}H}^{3 P}$ selective off resonance decoupling (Table II). The phosphorus chemical shift of P(OMe)₃ is at higher

© Elsevier Sequoia/Printed in Switzerland

R	R'	$\delta(\underline{P}(OMe)_3)$	$\delta(\underline{P}(OEt)_3)$	$^{1}J(\underline{\text{Hg}},\underline{P}(OMe)_{3})$	$^{1}J(\underline{Hg},\underline{P}(OEt)_{3})$	δ(¹⁹⁹ Hg)
Ме	Me	120.4		11123		1041
Me	Et	121.5	113.8	10717	11029	1036
Et	Et		115.0		10645	1031

TABLE II. NMR Parameters of [HgP(OR)₃P(OR')₃](O₃SCF₃)_{2^a}.

^a0.25 mmol Hg/cm⁻³ in CH₂Cl₂, 253K.

frequency for $[HgP(OMe)_3P(OEt)_3]^{2+}$ than for $[Hg\{P(OMe)_3\}_2]^{2+}$ whilst ${}^{1}J(Hg,P(OMe)_3)$ is smaller for $[HgP(OMe)_3P(OEt)_3]^{2+}$ than for $[Hg\{P(O-Me)_3\}_2]^{2+}$. The opposite is true when comparing $H_2(P(O-Me)_3)_2]^{2+}$ where $H_3(P(O-Me)_3)_2]^{2+}$ where $H_3(P(O-Me)_3)_2$ where $H_3(P(O-Me)_3)_3$ where $H_3(P(O-Me)$ $[HgP(OMe)_3P(OEt)_3]^{2+}$ with $[Hg\{P(OEt)_2\}_2]^{2+}$. This proves the trans-influence [18] of P(OEt)₃ to be higher than for $P(OMe)_3$. The ³¹P coordination shifts of $[Hg{P(OR)_3}_n]^{2+}$ are negative, as usually observed for phosphite ligands coordinated to metals, and amount up to 47.2 ppm. The position of the ³¹P resonance decreases in the order n = 3 > 2 > 4 > 1(Table I), whilst $\delta(^{31}P)$ shifts progressively as the number of ligands increases in [Hg(PR3)n]²⁺ and $[Ag{P(OR)_3}_n]^+$. The ¹⁹⁹Hg resonances of $[Hg{P-(OR)_3}_n]^{2+}$ are shifted to high frequency with increasing n, as has been observed for cationic mercury(II)phosphine complexes. Interestingly, the addition of the fourth phosphite (to give [Hg{P(O- $[R]_{3}_{4}^{2+}$ produces a much larger change in mercury chemical shift than the addition of a fourth phosphine (to give $[Hg(PR_3)_4]^{2+}$) [10].

The metal phosphorus bond in the complexes $[Hg{P(OR)_3}_n]^{2+}$, R = Me, Et; n = 1, 2 is kinetically stable on the NMR time scale at ambient temperature. The corresponding complexes with triphenylphosphite are kinetically labile above 213K (n = 1) or 183K (n = 2) as shown by the loss of the Hg-P coupling. These results reflect the σ donor capability to decrease in the order P(OR)₃ > P(OPh)₃. Solutions of the stoichiometry Hg²⁺:P(OR)₃ = 1:3 display only one broad ³¹P signal at 253K which resolves upon cooling (173K for R = Me, 193K for R = Et) to the coupled spectra of the species $[Hg{P(OR)_3}_n]^{2+}$, n = 2-4 (*vide supra*). The ³¹P chemical shift at 253K nearly equals $\Sigma\delta_n p_n$ or $[Hg{P(OR)_3}_n]^{2+}$, n = 2-4 at 193K. This indicates that there is ligand exchange but no dissociation of the complexes. The complexes $[Hg{P(OR)_3}_4]^{2+}$ are kinetically labile at temperatures above 193K (R = Et).

Experimental

The NMR spectra were recorded on a multinuclear Bruker WP-80 spectrometer in the FT mode, temperatures being adjusted using a B-VT-1000 accessory. NMR spectra were calculated with PANIC on a Bruker Aspect 2000 computer.

 $[Hg(DMSO)_6](O_3SCF_3)_2$ was prepared according to the literature [19]; all other reagents were commercial and used without purification. The mercury phosphite complexes ($\mathbf{R} = \mathbf{Me}$, Et) seem to melt below ambient temperature. The complexes decompose upon standing at room temperature with formation of elemental mercury. Dialkylphosphito-P-mercury complexes could be identified as decomposition intermediates.

Acknowledgement

Thanks are due to the Fonds zur Förderung der Wissenschaft, Vienna, for making available the NMR spectrometer.

References

- 1 E. C. Alyea, S. A. Dias, R. G. Goel, W. O. Ogini, P. Pilon and D. M. Meek, *Inorg. Chem.*, 17, 1697 (1978).
- 2 S. O. Grim, D. P. Shah, C. K. Haas, J. M. Ressner and P. H. Smith, *Inorg. Chim. Acta*, 36, 139 (1979).
- 3 T. Allman, R. G. Goel and P. Pilon, Canad. J. Chem., 57, 91 (1979).
- 4 E. C. Alyea and S. A. Dias, Canad. J. Chem., 57, 83 (1979).
- 5 R. Colton and D. Dakternieks, Austral. J. Chem., 33, 955 (1980).
- 6 N. A. Bell, T. D. Dee, P. L. Goggin, M. Goldstein, R. J. Goodfellow, T. Jones, K. Kessler, D. M. McEwan and I. W. Nowell, J. Chem. Research (M), 201 (1981).
- 7 H. B. Buergi, R. W. Kunz and P. S. Pregosin, *Inorg. Chem.*, 19, 3707 (1980).
- 8 P. L. Goggin, R. J. Goodfellow, D. M. McEwan and K. Kessler, *Inorg. Chim. Acta*, 44, L111 (1980).
- 9 P. L. Goggin, R. J. Goodfellow, D. M. McEwan, A. J. Griffiths and K. Kessler, J. Chem. Research (M), 2315 (1979).
- 10 R. Colton and D. Dakternieks, Austr. J. Chem., 34, 323 (1981).
- 11 A. Yamasaki and E. Fluck, Z. Anorg. Allg. Chem., 396, 297 (1973).
- 12 M. C. Demarcq, Phosphorus Sulfur, 13, 9 (1982).
- 13 E. L. Muetterties and C. W. Alegranti, J. Am. Chem. Soc., 94, 6386 (1972).
- 14 H. B. Buergi, E. Fischer, R. W. Kunz, M. Parvez and P. S. Pregosin, *Inorg. Chem.*, 21, 1246 (1982).
- 15 J. Eichbichler and P. Peringer, Inorg. Nucl. Chem. Lett., 17, 305 (1981).
- 16 P. S. Pregosin and R. W. Kunz, '³¹P and ¹³C NMR of Transition Metal Phosphine Complexes', Springer Berlin (1979).
- 17 W. McFarlane and D. S. Rycroft, J. Chem. Soc. Faraday Trans. II, 70, 377 (1974).
- 18 T. G. Appleton, H. C. Clark and L. E. Manzer, Coord. Chem. Rev., 10, 335 (1973).
- 19 P. Peringer, J. Inorg. Nucl. Chem., 42, 1501 (1980).