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complexes [Hg{P(OR),},]‘+ with n > 4 could be 
detected. 

Table I presents the ‘lP and 199Hg NMR para- 
meters of the new complexes. The one bond mer- 
cury-phosphorus coupling of the complexes [Hg- 

WW3 I'+ represent the largest 1J(199Hg, 31P) and, 
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TABLE I. NMR Parameters of [Hg{P(OR)a),](OaSCFa)a“. 

Whilst phosphine coordination compounds of 
mercury of the type [HgX,(PR,),], [HgX(PR3h]’ 
and [Hg(PR3),]*+ have received much study in the 
recent years [l-10], there is only one report on 
mercury tertiary phosphite complexes, concerning 

[HgXz (P(OR)s ),I with X= Cl, I; R=Et and n = 
1,2 [ 111. We report here on cationic mercury phos- 
phite complexes [Hg(P(OR)3),] 2+, n = l-4. 

Results and Discussion 

Mercury(II)trifluoromethanesulfonate (which was 
preferred to mercury(II)perchlorate in view of the 
explosive nature of Hg(C104)2 in contact with oxidis- 
ing materials) and tertiary phosphites (P(OMe), and 
P(OEt)3) in the stoichiometry 1 :l form coordination 
complexes [ HgP(OR),] 2+ in dichlorome thane . This 
and the other complexes were identified according 
to its 31P and 199Hg NMR spectra (vi& &zfiu). The 
existence of an 1: 1 adduct is in contrast to the reac- 
tion of tertiary phosphines with Hg(ClO,),, where 
no evidence for the formation of 1 :l adducts was 
observed [lo]. 

Addition of a second equivalent of P(OR), leads 

to Wg@‘UW,h12+. Such species were already 
inferred from electrochemical measurements [ 121. 

Upon addition of one further equivalent of P- 

(OR),, MdWR)~~,12+ is formed, which under- 
went partial disproportionation into the bis and 
tetrakis complex according to eqn. 1: 

WMWR)d312+-+ 

D-kdWR)~h1” + HdWW31~12+ (1) 

This disproportionation is not observed for the corre- 
sponding phosphine complexes [Hg(PR3)3] 2+ [lo] ; 
cationic silver(I) phosphite complexes [Ag(P(O- 
R)3}3]+ have however been reported to dispropor- 
tionate in the above way [13]. Integration of the 
respective signals leads to the equilibrium constants 

K = (~~~~~~~~~,~,12+~~~~~~~~~~~~12+~/~~~~~~~- 
R)3}3]2+ = 0.01 (R = Me) and K = 0.1 (R = Et). 

as far as we are aware, the largest ‘J(M,P) values 
reported so far. This should be associated with very 
short Hg-P bonding distances [ 141. The Hg-P one 
bond coupling constants thus cover the remarkable 
range from 143 Hz (for [Hg(P(0)(OEt)2)2(~Ph3)2] 
[15]) to 17528 Hz for [HgP(OMe)3]2+, i.e. more 
than two orders of magnitz. The Hg-P coupling 

of [Hg{P(OR)s ),I 2+ decreases with increasing n, 
as has been observed for [Hg(PR3h12+ [lo] and this 
is attributed to the s character of the HgP bond [ 161. 
‘H NMR spectra of [Hg(P(OMe)3)2]2+ exhibit a 
pseudo triplet pattern due to virtual coupling in the 
AA’X9X9’ spin system, this indicating a large two 
bond phosphorus-phosphorus coupling. More ac- 
curate [ 161 estimates of 2J(31P,31P) were expected 
from the asymmetric complexes [HgP(OR)sP(O- 

R’)312+ containing two chemically nonequivalent 
phosphorus atoms, allowing straightforward analysis 
of the spectrum. The compound [HgP(OMe)3P(O- 

Et)3 1 2+ is formed by synproportionation of the 
respective symmetric compounds [eqn. 2): 

[Hg{P(OMe)a I2 1 2+ + WdWW3 I2 1 2+ b 

In solutions of the stoichiometry Hg2+:P(OR)3 = 
1:4 the complex [Hg{P(OR),},12+ is formed. No 

2 FW(OMeP@Et)31 2+ (2) 
A near statistical distribution of the species (eqn. 2) 
arises at equilibrium (K s 4). The two bond coupling 
2J P P) of the asymmetric complex has been deter- (3 
mined to be 567 Hz and is smaller than for [Hg{P- 
(0)(OMe)2}2] (700 Hz in CDC13) [ 171. 

The AB spectrum has been assigned using {1H}31P 
selective off resonance decoupling (Table II). The 
phosphorus chemical shift of P(OMe)3 is at higher 
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R n 6 (3’P) 6 ( 199Hg) 

Me 1 98.2 826 17528 253 
Me 2 120.4 1041 11123 253 
Me 3 132.3 1722 6756 173 
Me 4 117.8 1933 4410 173 
Et 1 90.8 823 17323 253 
Et 2 115.0 1031 10645 253 
Et 3 128.8 1720 6630 173 
Et 4 111.5 1965 4308 173 

T,K 

ao.25 mmol/cm-3 CHaCla, in ppm to high frequency of 85% 
H3P04 or aqueous Hg(C104)2 (2 mmol HgO (cmW3 60% 
HClO4); coupling constants in Hz. 
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TABLE II. NMR Parameters of [ HgP(OR)aP(OR’)s] (OsSCF&*. 
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R R’ 6 (P_(OMe)s) 6 (P_(GEt)s) ‘J(Hg,QOMelsJ ‘J(Hg$(OEt)sJ 6 (“‘Hg) -- -- 

Me Me 120.4 11123 1041 
Me Et 121.5 113.8 10717 11029 1036 
Et Et 115.0 10645 1031 

80.25 mmol Hg/cmw3 in CH$la, 253K. 

frequency for [HgP(OMe),P(OEt),]‘+ than for 

]Hg{P(OMe)s 1s I’+ whilst 1J(Hg,P(OMe)3) is smaller 
for [HgP(OMe)3P(OEt)3]2+ -&&I for [Hg{P(O- 

MeM212+. The opposite is true when comparing 
[HgP(OMe)3P(OEt),]2+ with [Hg(P(OEt)2}2]2’. This 
proves the trans-influence [ 181 of P(OEt), to be 
higher than for P(OMe)3. The 31P coordination shifts 

of ]Hg{P(OR)s],l 2+ are negative, as usually observed 
for phosphite ligands coordinated to metals, and 
amount up to 47.2 ppm. The position of the 31P 
resonance decreases in the order n = 3 > 2 > 4 > 1 
(Table I), whilst S(3’P) shifts progressively as the 
number of ligands increases in [Hg(PR3),12+ and 

]Ag{P(OR)s ),I +. The lggHg resonances of [Hg{P- 

W)3),12+ are shifted to high frequency with 
increasing n, as has been observed for cationic mer- 
cury(II)phosphine complexes. Interestingly, the 
addition of the fourth phosphite (to give [Hg{P(O- 
R)3}4]2+) produces a much larger change in mercury 
chemical shift than the addition of a fourth phos- 
phine (to give [Hg(PR3)4] 2+) [lo]. 

The metal phosphorus bond in the complexes 
[Hg{P(OR)3},]2+, R = Me, Et; n = I,2 is kinetically 
stable on the NMR time scale at ambient temper- 
ature. The corresponding complexes with triphenyl- 
phosphite are kinetically labile above 213K (n = 1) 
or 183K (n = 2) as shown by the loss of the Hg-P 
coupling. These results reflect the u donor capability 
to decrease in the order P(OR)3 > P(OPh),. Solutions 
of the stoichiometry Hg2+:P(OR)3 = 1:3 display only 
one broad 31P signal at 253K which resolves upon 
cooling (173K for R = Me, 193K for R = Et) to the 
coupled spectra of the species [Hg{P(OR)3},] 2+, 
n = 2-4 (uide supru). The 31P chemical shift at 253K 
nearly equals CGnpn or [Hg{P(OR)3},]2+, n = 2-4 at 
193K. This indicates that there is ligand exchange but 
no dissociation of the complexes. The complexes 

FbWW,),12+ are kinetically labile at temper- 
atures above 193K (R = Et). 

Experimental 

The NMR spectra were recorded on a multinuclear 
Bruker WP-80 spectrometer in the FT mode, temper- 
atures being adjusted using a B-VT-1000 accessory. 
NMR spectra were calculated with PANIC on a 
Bruker Aspect 2000 computer. 

[Hg(DMS0)e](03SCF3), was prepared according 
to the literature [ 191; all other reagents were 

commercial and used without purification. The 
mercury phosphite complexes (R = Me, Et) seem to 
melt below ambient temperature. The complexes 
decompose upon standing at room temperature with 
formation of elemental mercury. Dialkylphosphito- 
P-mercury complexes could be identified as decompo- 
sition intermediates. 
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