Allylstannation as a Route to 4-Halo-2,6-disubstituted Tetrahydropyrans $CH(X)-CH_2-(CH(C_2H_5)-CH_2(C_2H_5)-CH_2(X=Cl,Br)$

ANDREA BOARETTO, DANIELE MARTON, GIUSEPPE TAGLIAVINI

Istituto di Chimica Analitica, Università di Padova, I-35100 Padua, Italy

and ALESSANDRO GAMBARO

Istituto di Chimica Fisica, Università di Padova, I-35100 Padua, Italy

Received May 2, 1983

The most important general methods for synthesis of six-membered heterocycles are still those based on cyclization of diols and haloalcohols. Moreover, some modifications of the Prins reaction [1], in which 1-olefins are condensed with aldehydes and hydrogen halides, lead to 4-halo-3-alkyl-tetrahydropyrans [2].

During our investigations on allylstannation [3], we discovered that tetrahydropyrans of the formula

can be easily synthesized by working-up the system $Bu_3SnCH_2CH=CH_2/C_2H_5CHO$ in the presence of SnX_4 (X = Cl, Br). The use of these substrates, together with others such as $BuCl_2SnCH_2CH=CHCH_3/RCHO$ and $Bu_3SnCH_2CH=CHCH_3/RCHO/BuSnCl_3$, promises to be a general method in synthesizing this class of compounds [4].

The synthesis was performed by adding, at -15 °C under stirring, 30 mmol of SnX₄ (X = Cl, Br) to a

mixture of 30 mmol of $Bu_3SnCH_2-CH=CH_2$ and 66 mmol of C_2H_5CHO . Then the system was allowed to react for 1 hr at room temperature. After hydrolysis with Na_2CO_3 2 M (15 ml) the reaction products were extracted with ethyl ether. The solvent was taken off by distillation and the residue analyzed by gas chromatography. In such a way compounds (1) were obtained: X = Cl, 90% yield, b.p. 56-57 °C/3 mm Hg; X = Br, 85% yield, b.p. 75-77 °C/5 mm Hg. Their identification was carried out by ^{13}C n.m.r. spectroscopy and mass spectra: the ^{13}C chemical shifts together with relevant i.r. stretching frequencies and gas-chromatographic data are listed in Table I.

The reaction path may be represented by the following steps:

$$Bu_{3}SnCH_{2}CH=CH_{2}+SnX_{4} \longrightarrow$$

$$Bu_{3}SnX+CH_{2}=CHCH_{2}SnX_{3} \qquad (a)$$

$$(2)$$

(2) + RCHO
$$\longrightarrow X_3$$
SN-O-CH(R)-CH₂CH=CH₂
(b)

(3) + RCHO
$$\longrightarrow$$

 $X_3Sn-O-CH(R)-O-CH(R)-CH_2CH=CH_2$ (c)
(4)

Adduct (4) collapses into compound (1) through an intramolecular rearrangement:

$$(4) \longrightarrow \begin{bmatrix} X & 0 & H(R) \\ Sn & CH_2 & CH(R) \\ X & X - - CH - CH_2 \end{bmatrix} \longrightarrow (1) + X_2 SnO$$

The above scheme takes into account the ease of the insertion of aldehydes into the SnC bond [3]

TABLE I. 13C N.m.r. Shiftsa, Relevant I.r. and Gas-chromatographic Data of the Prepared Compounds.

Compound (1) X CI	p.p.m. carbon atoms ^b					$\overline{\nu}_{\mathbf{C}-\mathbf{X}} \ (\mathbf{cm}^{-1})$		gl.p.c.
	2,6	2', 6'	2", 6"	3, 5 42.8	56.1	equatorial axial		retention times ^c
						760	580	5′6″
Br	78.5	28.9	9.9	43.4	47.0	705	560	7′18″

^aValues from internal Me₄Si. ^bSee formula (1). ^cColumn (2 m, 1/8 inch) filled with SE30; t_c = 150 °C, t_d = 270 °C, t_i = 250 °C; nitrogen flow rate 20 ml/min.

in haloallytin substrates (step b), as well as the subsequent insertion of aldehydes into a Sn-O bond [5] (step c).

Acknowledgement

This work has been carried out with the financial support of the CNR (Rome), 'Progetto Finalizzato del CNR Chimica Fine e Secondaria'.

References

- 1 V. I. Isagulyants, T. G. Khaimova, V. R. Melikyan and S. V. Pokrovskaya, Russ. Chem. Revs., 37, 17 (1968) and references therein.
- E. Arundale and L. Mikeska, Chem. Revs., 51, 505 (1952).
- 2 P. R. Stapp and D. S. Weinberg, J. Org. Chem., 34, 3592 (1969);
 - P. R. Stapp, J. Org. Chem., 34, 479 (1969);
 - A. A. Gevorkian, P. I. Kazaryan and R. S. Mkrtchyan, Arm. Khim. Zh., 28, 508 (1975);

- J. Cologne and P. Boisde, Bull, Soc. Chim. France, 21, 824 (1956);
- K. Nishiura, T. Tagano, Y. Wada, S. Tanimoto and M. Okano, Bull. Soc. Chem. Japan, 53, 1376 (1980).
- 3 G. Tagliavini, V. Peruzzo, G. Plazzogna and D. Marton, Inorg. Chim. Acta, 24, LA7 (1977);
 - V. Peruzzo and G. Tagliavini, J. Organomet. Chem., 162, 37 (1978);
 - A. Gambaro, V. Peruzzo, G. Plazzogna and G. Tagliavini, J. Organomet. Chem., 197, 45 (1980);
 - A. Gambaro, D. Marton, V. Peruzzo and G. Tagliavini, J. Organomet. Chem., 204, 191 (1981);
 - A. Gambaro, D. Marton, V. Peruzzo and G. Tagliavini,
 - J. Organomet. Chem., 226, 149 (1982).
- A. Gambaro, P. Ganis, D. Marton, V. Peruzzo and G. Tagliavini, J. Organomet. Chem., 231, 307 (1982). 4 A. Gambaro, A. Boaretto, D. Marton and G. Tagliavini,
- to be published.
- 5 A. J. Bloodworth and A. G. Davies, Chem. Commun., 24 (1965);
 - A. G. Davies and W. R. Symes, Chem. Commun., 25 (1965);
 - A. G. Davies and W. R. Symes, J. Chem. Soc. C, 1010 (1967);
 - A. J. Bloodworth, A. G. Davies and S. C. Wasishita, J. Chem. Soc., 1309 (1967).