Li|Lil|I₂ Galvanic Cells Using I₂-Nylon-6 Adducts as Positive Electrodes

TAKAKAZU YAMAMOTO,* MASAKAZU HISHINUMA, KOHTARO OSAKADA and AKIO YAMAMOTO

Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 227, Japan

Received June 14, 1983

Iodine is used as one of many active materials for cathodes of dry Li galvanic cells. Iodine in this Li|Li| I_2 galvanic cell is usually employed as adducts with electron donors such as poly(2-vinylpyridine) [1] and thiophene [2], since such adducts show higher electric conductivities than pure iodine and thus the internal resistance of the galvanic cells is lowered.

It is known that nylon-6, one of the most popular polymers, forms stable adducts with iodine [3]. However, use of the iodine-nylon-6 adduct as the cathode of the Li galvanic cell has not been reported. We previously reported the I_2 -nylon-6 adducts as being positive electrodes of wet cells (*e.g.*, Zn|ZnI₂(aq)|I₂nylon-6) [4]. As an extension of our previous research, we have examined the I_2 -nylon-6 adduct as the cathode of the dry Li galvanic cell, and now wish to report the results.

When a mixture of 2.7 g of I_2 and 0.3 g of nylon-6 was heated in a sealed glass tube under vacuum at 115 °C for 16 h, a black solid adduct (3.0 g) of iodine with nylon-6 was obtained. Since purple vapor of I_2 was scarcely observed in the sealed tube, most of I_2 is regarded to be taken into the black adduct. Although I_2 -nylon-6 adducts containing less than about 60 wt-% of I_2 have been prepared by dipping

*Author to whom correspondence should be addressed.

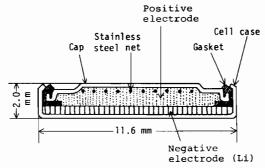


Fig. 1. Structure of the galvanic cell. Cell case and cap are made of stainless steel (SUS 304).

nylon-6 films into solutions containing I_2 [3, 4], the I_2 -nylon-6 adduct containing as much as 90 wt-% of I_2 has not been reported. Figure 1 shows a sketch of the dry Li galvanic cell using the I_2 -nylon-6 adduct as the positive electrode. As the negative electrode, a lithium plate (thickness = 0.5 mm, from Mitsui Mining & Smelting Co., Ltd.) was used.

Closed-circuit voltage (C.C.V.) and discharge time of the Li galvanic cell strongly depend on the wt-% of I_2 in the adduct as shown in Table I. When the wt-% of I_2 is lower than 69 corresponding to 1 mol of I_2 per monomer unit of nylon-6 (R-value = 1), the galvanic cell shows only minor C.C.V. Use of the adduct containing more than 82 wt-% of iodine gives initial C.C.V. of 2.8 V when discharged at 500 k Ω . These observations seem to be related to decrease in electric resistance of the I_2 -nylon-6 adduct with increase in the I_2 content. A preliminary study indicates that the I_2 -nylon-6 adduct containing of I_2 is an insulator whereas the adduct containing more than 82 wt-% of I_2 shows electric conductivity of a range of semiconductors.

Figure 2 shows discharge curves of the Li galvanic cells listed in Table I at 500 k Ω load at 25 °C. Figure 3 shows the dependence of the internal complex impedance of the Li galvanic cell (No 4 in Table I) on

No	I ₂ wt-%	R-value ^a	Weight of cathode mg	O.C.V. ^b V	(C.C.V.) ₀ at 500 kΩ ^c V	(C.C.V.) ₀ at 10 kΩ ^d V	Discharge time ^e h
1	50	0.5	44	(0)	0	0	0
2	69	1.0	66	2.8	1.5	0	0
3	82	2.0	88	2.8	2.8	2.6	1100
4	87	3.0	105	2.8	2.8	2.2	1650
5	90	4.0	123	2.8	2.8	2.4	2000

TABLE I. Characterization of Li|Lil|I2-nylon-6 Galvanic Cells.

^a R = (mol of I_2)/(mol of monomer unit of nylon-6). ^bOpen circuit voltage measured by Takeda Riken TR-8651 electrometer. ^cInitial closed circuit voltage when discharged at 500 k Ω . ^dInitial closed circuit voltage when discharged at 10 k Ω . ^eTime elapsed until C.C.V. drops to 2.3 V at 500 k Ω discharge.

L179

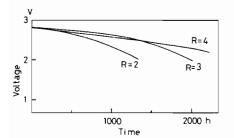


Fig. 2. Discharge curves of the Li galvanic cells listed in Table I (25 °C, 500 k Ω). As for the R-value, see Table I.

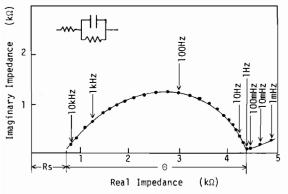


Fig. 3. Dependence of internal complex impedance of the Li galvanic cell on the frequency of the alternative current (Cole-Cole plot). Li galvanic cell = No 4 in Table I.

the frequency of an alternative current applied to the Li galvanic cell (Cole-Cole plot) [5]. The internal resistance of the Li galvanic cell estimated from the Cole-Cole plot (internal resistance = Rs + θ in Fig. 3) increases as I₂ in the adduct is consumed according to the discharge (Fig. 4). As stated above, the electric conductivity of the I₂-nylon-6 decreases steeply with decrease in the proportion of I₂ in the adduct, and the increase in the internal resistance due to the decrease in the I₂-cotent is apparently responsible for the decrease of C.C.V. during the discharge as shown in Fig. 2.

As described above, the iodine adduct with the popular polymer (nylon-6) is usable as a good cathode of the Li galvanic cell, and this finding may

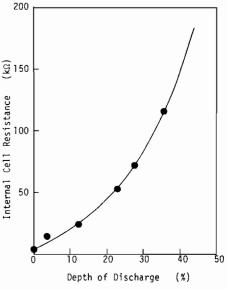


Fig. 4. Change of the internal cell resistance during discharge of the cell. Depth of discharge = $(I_2 \text{ consumed according to the discharge})/(I_2 \text{ added})$.

provide a route to design a new low-priced commercial Li galvanic cell.

The authors express their grateful acknowledgement to Mitsui Mining & Smelting Co., Ltd. for donating the Li plate and to the GS Battery Co., Ltd. for donating the cases of the Li galvanic cell.

References

- 1 A. A. Schneider, D. E. Harney and M. J. Harney, J. Power Sources, 5, 15 (1980).
- 2 S. Saito, S. Kashihara and G. Takeshima, 'Symposium on Galvanic Cell Chemistry', B21 (1979).
- 3 H. Arimoto, Kobunshi Kagaku, 19, 101, 205 (1962); H. Arimoto, M. Ishibashi, M. Hirai and Y. Chatani, J. Polym. Sci., A3, 317 (1965).
- 4 T. Yamamoto, S. Kuroda and A. Yamamoto, Inorg. Chim. Acta, 65, L175 (1982); T. Yamamoto and S. Kuroda, J. Electroanal. Chem. Interfac. Electrochem., in press.
- 5 K. S. Cole and R. H. Cole, J. Chem. Phys., 9, 341 (1941); A. Kozawa, T. Hirai and M. Nagayama, 'Complex Plane Analysis for the Electrochemical Studies', The U.S. Office of the Japanese Electrochemical Society.