Inductive and Steric Effects for Triarylphosphine Substitution in Pentakis(arylisocyanide)cobalt(I)

C. A. L. BECKER

Department of Chemistry, Washburn University of Topeka, Topeka, Kans. 66621, U.S.A.

Received June 27, 1983

In a previous investigation [1] of triarylphosphine substitution in pentakis(arylisocyanide)cobalt(I), PPh₃ was observed to favor disubstitution of all but the sterically-hindered arylisocyanides (e.g., 2,6- $Et_2C_6H_3$ -, 2,6-Me_2C_6H_3-, 2,4,6-Me_3C_6H_2NC), while the less reactive $P(C_6H_4Cl-p)_3$ clearly favored monosubstitution with even the most reactive $[Co(CNR)_5]$ -X (e.g., R = p-MeC₆H₄). Steric hindrance of the lessreactive arylisocyanides and electron-withdrawing effect of the chlorosubstituent in $P(C_6H_4Cl-p)_3$ were cited as probable causes for these substitution patterns, but inductive effects in the arylisocyanides and steric hindrance in $P(C_6H_4Cl-p)_3$ have hitherto not been excluded. Current investigation using PPh₃, $P(C_6H_4Cl-p)_3$, and $P(C_6H_4OMe-p)_3$ extended to the arylisocyanides $R = C_6H_4Cl-p$, C_6H_4Me-o , $C_6H_3Et_2$ -2,6 seems to confirm the original hypothesis, although the behavior of $P(C_6H_4OMe_{-p})_3$, the triarylphosphine with electron-donating substituent, relative to PPh₃ is somewhat unexpected.

Experimental

The $[Co(CNC_6H_4Cl-p)_5]BF_4$, $[Co(CNC_6H_4Me-o)_5]ClO_4$, $[Co(CNC_6H_3Et_2-2,6)_5]ClO_4$, and PPh_3substituted complexes listed in Table I were prepared as previously described [1-3]. Commercial $P(C_6H_4-Cl-p)_3$ and $P(C_6H_4OMe-p)_3$ (Strem Chemicals) were used without further purification. Anhydrous diethyl ether was filtered through alumina immediately before use. IR spectra were recorded on a Perkin-Elmer 398 spectrophotometer. Electronic spectra were recorded on a Cary 219 spectrophotometer. Elemental analyses were performed commercially.

Results and Discussion

Arylisocyanide-triarylphosphine complexes of Co(I) containing p-ClC₆H₄NC, o-MeC₆H₄NC, or 2,6-Et₂C₆H₃NC with PPh₃, P(C₆H₄OMe-p)₃, or P(C₆H₄-Cl-p)₃ are listed in Table I with melting points (decomposition ranges), $-N \equiv C$ IR frequencies, and electronic spectral values (λ_{max} , ϵ). New complexes

0020-1693/83/\$3.00

containing $P(C_6H_4OMe_p)_3$ or $P(C_6H_4Cl_p)_3$ prepared for this study are indicated by an asterisk (elemental analyses provided upon request to the author). Methods of preparation and apparent substitution preference are considered first.

Whereas $[Co(CNR)_3(PPh_3)_2]X$ were typically prepared [1, 3] by reaction of 5:1 mole ratio PPh₃ with $[Co(CNR)_5]X$ in short (3-5 min) reaction periods, this procedure sufficed for only [Co(CNC₆- $H_4Me \cdot o_3 \{P(C_6H_4OMe \cdot p)_3\}_2]ClO_4.$ Reaction of $[Co(CNC_6H_4Cl-p)_5]BF_4$ $P(C_6H_4OMe-p)_3$ with showed unexpected behavior. In a reaction of 5:1 mole ratio for 15 min the product, after two re-crystallizations from CH₂Cl₂/Et₂O, analyzed as 0.75 [Co- $(CNC_6H_4Cl-p)_3\{P(C_6H_4OMe-p)_3\}_2]BF_4 + 0.25[Co (CNC_6H_4Cl-p)_4P(C_6H_4OMe-p)_3]BF_4$, and additional 4 hr-reaction with excess $P(C_6H_4OMe_p)_3$ was required to complete conversion to [Co(CNC₆H₄Cl p_{3} {P(C₆H₄OMe- p_{3} }]BF₄. Since the monosubstituted derivative is more soluble than the disubstituted, $[Co(CNC_6H_4Cl-p)_4P(C_6H_4OMe-p)_3]BF_4$ was prepared in even greater initial percentage. Thus $[Co(CNC_6H_4Cl-p)_4P(C_6H_4OMe-p)_3]BF_4$ appears to be more readily prepared than $[Co(CNC_6H_4Cl-p)_4 PPh_3$ [ClO₄ [1], in contradiction to triarylphosphines with electron-donating substituents favoring disubstitution. Reaction of $P(C_6H_4OMe_{-p})_3$ with [Co- $(CNC_6H_4Cl-p)_5]BF_4$ in 1.1:1 mole ratio for 30 min (Method B [1]), however, also produced a mixture of mono- and disubstituted complex. Preference for mono- or disubstitution is apparently not strong, and pure $[Co(CNC_6H_4Cl-p)_4P(C_6H_4OMe-p)_3]BF_4$ could probably be obtained with sufficient patience. This is not true for $[Co(CNC_6H_4Cl-p)_4PPh_3]ClO_4$ [1] and probably not true for the reported [Co(CNC₆H₄Me $p_{4}PPh_{3}ClO_{4}[4, 1].$

Reaction of 5:1 mole ratio $P(C_6H_4Cl-p)_3$ with [Co(CNR)₅]X produced monosubstituted derivatives whether reaction time was long, $[Co(CNC_6H_4Me-o)_4 P(C_6H_4Cl-p)_3$ ClO₄ (1 hr), or short, [Co(CNC₆H₄Cl $p_4P(C_6H_4Cl-p)_3]BF_4$ (15 min). This confirms that $P(C_6H_4Cl-p)_3$ favors monosubstitution. Reactions involving 2,6-Et₂C₆H₃NC also monosubstituted, $[Co(CNC_6H_3Et_2-2,6)_4P(C_6H_4OMe-p)_3ClO_4]$ and [Co- $(CNC_6H_3Et_2-2,6)_4P(C_6H_4Cl-p)_3]ClO_4$, further supporting the [Co(CNC₆H₃Et₂-2,6)₅]X preference for monosubstitution. Disubstitution reactions involving $P(C_6H_4Cl-p)_3$ necessarily required starting with Co(II) [4-7]. The $[Co(CNC_6H_4Me \cdot o)_3 \{P(C_6H_4C) + C_6H_4C\}$ p_{3}_{2} ClO₄ and [Co(CNC₆H₃Et₂-2,6)₃{P(C₆H₄Cl p_{3}_{2} ClO₄ could be prepared by direct reduction/ ligand substitution [7] of the corresponding [Co- $(CNR)_5](ClO_4)_2$. Since $[Co(CNC_6H_4Cl-p)_5]X_2$ has not been prepared in a pure state [2, 8], excess Co- $(BF_4)_2 \cdot 6H_2O$ (in C_2H_5OH) was reacted with 3:2 mole ratio CNC_6H_4Cl-p and $P(C_6H_4Cl-p)_3$ (in

© Elsevier Sequoia/Printed in Switzerland

CH₂Cl₂), and crude product precipitated by dropwise addition of ether. After re-crystallization from CH₂-Cl₂/Et₂O, a mixture of di- and monosubstituted product was still present, which was finally converted to pure [Co(CNC₆H₄Cl-*p*)₃ {P(C₆H₄Cl-*p*)₃}₂]BF₄ upon extended reaction with excess P(C₆H₄Cl-*p*)₃ (Method C [1]). Since reactions involving CNC₆H₄Cl-*p* [1, 3] or Co(II) [7] have previously favored disubstitution, observation of any [Co(CNC₆H₄Cl-*p*)₄ P(C₆H₄Cl-*p*)₃ to favor monosubstitution. The [Co(CNC₆H₃Et₂-2,6)₃{P(C₆H₄OMe-*p*)₃}₂]ClO₄ was also prepared by reduction/ligand substitution reaction [7].

On the basis of product composition, then, the triarylphosphine with electron-withdrawing substituent, *i.e.* $P(C_6H_4Cl_{\cdot}p)_3$, apparently favors monosubstitution reactions much more strongly than does the unsubstituted triphenylphosphine. The triarylphosphine with electron-donating substituent, *i.e.* $P(C_6-H_4OMe_{\cdot}p)_3$, however, seems to behave analogously to PPh₃ or even favor monosubstitution reactions slightly more strongly. Control of ligand substituents has not been clearly established here. The $[Co(CNC_6-H_3Et_2-2.6)_5ClO_4$ monosubstitutes in all instances, supporting arylisocyanide steric control of these substitution reactions.

Melting (decomposition) ranges, $\nu(-N \equiv C)$ ir frequencies, and electronic spectral values (Table I) give further insight into the bond preference/stability of these complexes. No correlation between melting points of the complexes and of the triarylphosphine ligands is observed: $P(C_6H_4OMe-p)_3$, 120-124; PPh_3 , 79; $P(C_6H_4Cl-p)_3$, 90–93 °C [9]. Since decomposition temperatures should be an approximate indication of relative stability, the disubstituted triarylphosphine complexes appear more stable than the corresponding monosubstituted, with the exception of $[Co(CNC_6H_3Et_2.2,6)_4PPh_3]ClO_4$. Since monosubstitution is the favored reaction with both $P(C_6H_4Cl-p)_3$ and 2,6-Et₂C₆H₃NC, the complexes are examples for kinetic accessibility vs. thermodynamic stability. Complexes of PPh₃, both mono- and disubstituted, in general appear to be the most stable, and complexes of $P(C_6H_4Cl-p)_3$, the least stable. The decomposition temperature range for [Co(CNC₆H₄Cl $p_{3}\{P(C_{6}H_{4}OMe_{-}p)_{3}\}_{2}]BF_{4}$ is lower than expected which correlates with the reaction showing unexpected tendency for monosubstitution, and that for $[Co(CNC_6H_4Me \cdot o)_3 \{P(C_6H_4OMe \cdot p)_3\}_2]ClO_4$ is unexpectedly high which may indicate exceptional stability for this complex.

Since higher $\nu(-N \equiv C)$ values indicate less π^* -acceptance and/or more σ -donation by the RNC and consequently more π^* -acceptance by the substituting PR₃, experimental $\nu(-N \equiv C)$ (Table I)—best measured from the strongest band in the solution spectra (2065, 2070, 2073; 2048, 2061, 2067; 2040, 2045,

2048 cm⁻¹)—are consistent with decreasing $d_{\pi} \rightarrow$ π^* acceptance in the expected order: P(C₆H₄Cl-p)₃ > PPh₃ > P(C₆H₄OMe-p)₃. Electron withdrawing/ donating abilities of the para-substituents are apparently transferred to coordinating ability of the triarylphosphine P-atom. For mull spectra (which are anticipatedly less accurate), ν (-N=C) are also in the expected order, except for $[Co(CNC_6H_4Me_{-0})_3]$ -(PPh₃)₂]ClO₄ (unusually low) and [Co(CNC₆H₃Et₂- $(2,6)_3(PPh_3)_2$ ClO₄ (higher than $[Co(CNR)_3 \{P(C_6H_4 - C_6H_3)_2]$ $Cl-p_{3}_{2}ClO_{4}$). For monosubstituted complexes, $[Co(CNC_6H_3Et_2-2,6)_4L]ClO_4$, $\nu(-N\equiv C)$ for the strongest solution band increases (2074, 2078, 2082 cm^{-1}) for L = P(C₆H₄OMe-p)₃, PPh₃, P(C₆H₄Cl-p)₃, respectively, clearly indicating increasing $d_{\pi} \rightarrow \pi^*$ acceptance by the respective triarylphosphine. Significant decrease in $\nu(-N \equiv C)$ for monosubstituted complexes compared to corresponding disubstituted is seen in solution data for the complete series [Co- $(CNR)_{3} \{ P(C_{6}H_{4}Cl_{-}p)_{3} \}_{2}] X,$ $[Co(CNR)_4P(C_6H_4Cl$ p_{3} X (2073, 2091; 2067, 2090; 2042, 2079 cm⁻¹), but is also evident in all other IR data. The triarylphosphines are significantly weaker π^* -accepting ligands than arylisocyanides.

An alternative interpretation of $\nu(-N=C)$ values for $[Co(CNC_6H_4Me_{-0})_3(PPh_3)_2]ClO_4$ is possible, with both mull and solution values abnormally low. Complexes with o-MeC₆H₄NC frequently show two strong IR bands instead of the one intense band, with weak shoulders, characteristic of most disubstituted arylisocyanide complexes of Co(I), so assignment of the strongest band vs. a shoulder can be ambiguous. The IR discussion was based on accepting the 2061vs bands for $\nu(-N \equiv C)$ in solution, instead of 2047s(sh), and 2039s in mull, instead of \sim 2067m (Table I). Perhaps the values: 2044, 2039, 2049 cm^{-1} (mull) and 2048, 2047, 2053 cm⁻¹ (solution); or 2065, 2067, 2078 cm⁻¹ (mull) and 2062, 2061, 2067 cm⁻¹ (solution) should be compared as $\nu(-N \equiv C)$ for [Co- $(CNC_6H_4Me \cdot o)_3L_2$ ClO₄, L = P(C₆H₄OMe \cdot p)₃, PPh₃, $P(C_6H_4Cl-p)_3$, respectively. Now both sets of data seem to challenge the expected (established) order of π^* -accepting ability: $P(C_6H_4Cl-p)_3 > PPh_3 > P(C_6-p)_3 > P(C_6-p)_3 > PPh_3 > P(C_6-p)_3 > PPh_3 > P(C_6-p)_3 > P($ H_4OMe_{-p})₃ assuming analogous coordination geometry throughout. IR data could be suggesting a different structure, due possibly to steric hindrance from ortho-substitution, but this would be the only evidence for structural differences. In this investigation then, it may not be the complexes with $P(C_6H_4$ - OMe_{-p})₃ that are necessarily 'out of place', but rather complexes with PPh₃ that are unusual.

Electronic spectra for five-coordinate Co(I) complexes with organoisocyanide ligands have been interpreted as $d \rightarrow \pi^*$ charge transfer bands [10-12] or as one d-d band and charge transfer bands [13, 5]. If the first transition—which is most accurately measurable—is metal-to-ligand charge transfer into a π^* molecular orbital based primarily on the equa-

Inorganica Chimica Acta Letters

Compound ^a	M. pt. ^b (°C)	Isocyanide IR ^c		Electronic spectra ^d
		Nujol	CH ₂ Cl ₂	
[Co(CNR ₁) ₃ L ₂ ^a]BF ₄ ^f	188–191	2015m(sh) 2059vs(br) 2069m(sh) ~2129w	~2020m(sh) 2065vs ~2120vs(sh)	365(34,500) 310(35,000) ≈283sh ≈270sh 240(82,000)
[Co(CNR ₁) ₃ L ₂ ^b]ClO ₄	241-244	2025m(sh) 2060vs 2085m(sh) 2133w	~2015m(sh) ~2027w(sh) } e 2070vs ~2117vw	360(31,000) 284(36,000) ≈243sh 232(75,000)
$[Co(CNR_1)_3L_2^c]BF_4^f$	225–230	~2005w(br) 2063s(v,br) ~2123w	~ 2015w ~ 2026w 2073s ~ 2126w	351(32,500) 294(37,000) ≈252sh 241(101,000)
[Co(CNR ₁) ₄ L ^e]BF ₄ ^f	190–193	~2017vw(sh) 2088vs(br) 2122w ~2145vw(sh) 2173m	~2013vw(sh)) ~2025vw(sh))e 2091vs(br) 2125w 2177m	342(34,000) ≈267sh) ≈263sh∫ ≈263sh∫ 243(90,000)
[Co(CNR ₂) ₃ L ₂ ^a]ClO ₄ ^f	235–239	~2025w(sh) 2044s ~2065m(sh) ~2110vw(sh)	2024w 2048s 2062s(sh) ~2110w(sh)	354(31,000) 307(38,000) ≈283sh 245br(85,000)
[Co(CNR ₂) ₃ L ₂ ^b]ClO ₄	214–216	~2020w(sh) 2039s ~2067m(sh) 2119w	~ 2022w(sh) 2047s(sh) 2061vs ~ 2105w(sh)	349(30,000) ~293sh 283(43,000) 236(64,500)
[Co(CNR ₂) ₃ L ₂ ^c]ClO ₄ ^f	208–213	~2043m(sh) 2049s 2078s 2118w	~ 2023w(sh) ~ 2053m(sh) 2067s ~ 2111vw(sh)	341(28,000) 291(46,000) 247(94,000)
[Co(CNR ₂) ₄ L ^c]ClO ₄ ^f	183-188	~ 2025vw(sh) ~ 2057vw(sh) 2075s(br) ~ 2089s(sh) 2122w 2172m	~ 2022vw(sh) ~ 2050vw(sh) 2090vs 2121w ~ 2135vw(sh) 2170m	334(26,000) ≈ 287sh ≈ 268sh 238(81,000)
[Co(CNR ₃) ₃ L ₂ ^a]ClO ₄ ^f	174–177	~1995vw(br) 2034s ~2039s(sh) 2102w	~1995w 2040s(br) ~2099vw	354(14,000) ≈ 312sh ≈ 285sh 251(85,000)
[Co(CNR ₃) ₄ L ^a]ClO ₄ ^f	143–145	~2000vw(sh) 2070s(br) 2104w 2156m	~ 2000vw 2074s 2105w 2159m	337(23,000) ≈ 270sh 255(82,000)
[Co(CNR ₃) ₃ L ₂ ^b]ClO ₄	189–195	~1997m(br) 2046vs(br)	~1999w(br) 2045vs ~2110vw(sh)	350(12,000) 286(52,000) 249(59,000)
[Co(CNR ₃) ₄ L ^b]ClO ₄	195–204	~2000vw 2069s(br) ~2083m(sh) 2109w 2159m	~1999vw 2078s 2108w ~2128vw(sh) 2160m	335(20,000) 264(58,000) ~234(58,000)
				(continued overlaaf)

(continued overleaf)

TABLE I (continued)

Compound ^a	M. pt. ^b (°C)	Isocyanide IR ^e		Electronic spectra ^d
		Nujol	CH ₂ Cl ₂	
[Co(CNR ₃) ₃ L ₂ ^c]ClO ₄ ^f	173-175	~1990w(br) 2042vs ~2057m(sh) ~2106w(sh)	~1990vw 2048vs(br) ~2105w(sh)	~343(12,000) ~291sh(48,000) 245(90,000)
[Co(CNR ₃) ₄ L ^e]ClO ₄ ^f	141-144	~1999vw 2067vs(br) 2079s(br) 2110w 2159m	~1999vw 2082s ~2111w(sh) ~2127vw(sh) 2163m	331(21,000) ≈267sh 244(77,000)

^aR₁ = C₆H₄Cl-*p*, R₂ = C₆H₄Me-*o*, R₃ = C₆H₃Et₂-2,6; L^a = P(C₆H₄OMe-*p*)₃, L^b = PPh₃, L^c = P(C₆H₄Cl-*p*)₃. ^bMelting range (uncorrected), decompositon. ^cThe ν (-N=C) in cm⁻¹, s = strong, m = medium, w = weak, v = very, sh = shoulder, br = broad. ^dThe $\lambda_{max}(\epsilon)$ in m μ (nm), ϵ without Gaussian resolution. ^eMay be considered as one band. ^fNew complexes prepared in this study.

torial arylisocyanides [10], electronic data are in accord with $d_{\pi} \rightarrow \pi^*$ accepting ability: P(C₆H₄OMe $p_{3} < PPh_{3} < P(C_{6}H_{4}Cl-p)_{3} \ll RNC.$ Weaker π^{*} -accepting ligands substituted for one or two RNC force the remaining RNC to become stronger π^* -accepting, thereby lowering the energy (increasing λ_{max}) for the first charge transfer. The λ_{max} of the first transitions for $[Co(CNR)_3(PR_3)_2]X$ (365, 360, 351; 354, 349, 341; 354, 350, 343 m μ) are consistent with this intepretation. The λ_{max} of the first transitions for $[Co(CNC_6H_3Et_2-2,6)_4L]ClO_4$ (337, 335, 331 m μ) are also in anticipated sequence and significantly lower than values for the corresponding [Co(CNC₆- $H_3Et_2-2,6)_3L_2$ ClO₄ complexes. This again indicates how the RNC ligands in complexes disubstituted with ligands that are weaker π^* -acceptors must undergo more $d_{\pi} \rightarrow \pi^*$ acceptance than in monosubstituted complexes.

Substitution reactions in $[Co(CNR)_5]X$, $R = p-ClC_6H_4$, $o-MeC_6H_4$, $2,6-Et_2C_6H_3$; with triarylphosphines, PR₃, R = Ph, $p-ClC_6H_4$, $p-MeOC_6H_4$; yield mono- or disubstituted products as expected, except for appearance of $[Co(CNC_6H_4Cl-p)_4P(C_6-H_4OMe-p)_3]BF_4$. The PPh₃ seems to show unexpectedly greater reactivity and stability in some of its complexes, relative to the other triarylphosphines, but the order of $d_{\pi} \rightarrow \pi^*$ accepting ability: $P(C_6H_4-P)$ $Cl-p_{3} > PPh_{3} > P(C_{6}H_{4}OMe-p)_{3}$ anticipated from inductive effects of the substituents is observed in all cases except for $\nu(-N\equiv C)$ in $[Co(CNC_{6}H_{4}Me-\sigma)_{3}-(PPh_{3})_{2}]ClO_{4}$, which indicates excessive π^{*} -acceptance.

References

- 1 C. A. L. Becker, J. Inorg. Nucl. Chem., 42, 27 (1980).
- 2 C. A. L. Becker, J. Inorg. Nucl. Chem., 37, 703 (1975).
- 3 C. A. L. Becker, Synth. React. Inorg. Met.-org. Chem., 4, 213 (1974).
- 4 S. Otsuka and M. Rossi, Bull. Chem. Soc. Japan, 46, 3411 (1973).
- 5 J. W. Dart, M. K. Lloyd, R. Mason, J. A. McCleverty and J. Williams, J. Chem. Soc., Dalton Trans., 1747 (1973).
- 6 E. Bordignon, U. Croatto, U. Mazzi and A. A. Orio, *Inorg. Chem.*, 13, 935 (1974).
- 7 C. A. L. Becker, Synth. React. Inorg. Met.-org. Chem., 9, 445 (1979).
- 8 C. A. L. Becker, Inorg. Chim. Acta, 27, L105 (1978).
- 9 Strem Catalog No. 10, Strem Chemicals, Inc., Newburyport, MA, 1981.
- 10 C. A. L. Becker, J. Orgnomet. Chem., 104, 89 (1976).
- 11 C. A. L. Becker, Inorg. Chim. Acta, 36, L441 (1979).
- 12 C. A. L. Becker, Inorg. Nucl. Chem. Lett., 16, 297 (1980).
- 13 Y. Dartiguenove, M. Dartiguenove and H. B. Gray, Bull. Soc. Chim. Fr., 12, 4225 (1969).