Synthesis and Properties of Tungsten(0) Carbonyl Complexes with Carbonyl-stabilized Ylides

ISAO KAWAFUNE and GEN-ETSU MATSUBAYASHI*

Department of Applied Chemistry, Faculty of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565, Japan Received September 27, 1982

The reactions of dimethylsulfonium, triphenylphosphonium, and 4-methylpyridinium phenacylides $(PhC(O)\overline{CHZ}; \ Z = SMe_2 \ (Y_{Ph-S}), \ PPh_3 \ (Y_{Ph-P}), \ and$ NC_5H_4Me-4 $(Y_{Ph_TN}))$ with $W(CO)_5THF$ gave $W(CO)_{s}(PhC(O)\overline{C}HZ)$. IR and ¹H NMR spectra have indicated the ylide carbon-to-tungsten linkage in $W(CO)_5 Y_{Ph-S}$ and the coordination of the carbonyl oxygen atom in $W(CO)_5 Y_{Ph-P}$ and $W(CO)_5 Y_{Ph-N}$. The corresponding three 2-pyridylcarbonylmethylides $(C_5H_4NC(O)\overline{CHZ}; \dot{Z} = \dot{S}Me_2 (Y_{Py-S}), \dot{P}Ph_3 (Y_{Py-P}),$ and NC_5H_4Me-4 (Y_{Py-N}) reacted with $W(CO)_6$ under UV irradiation or with W(CO)₅THF to afford $W(CO)_4(C_5H_4NC(O)\overline{C}H\overline{Z})$. $W(CO)_4Y_{Pv-S}$ (red form), $W(CO)_4 Y_{Py-P}$, and $W(CO)_4 Y_{Py-N}$ have been suggested to involve the chelation through carbonyl oxygen and pyridine nitrogen on the basis of IR and ¹H NMR spectra. Another geometrical isomer of $W(CO)_4 Y_{Pv-S}$ isolated as a brown form showed the same spectral behaviors as the red complex in solution. Configurations and properties of the complexes have been discussed on the basis of IR and ¹H NMR, together with electronic absorption and emission spectra.

Introduction

Negatively charged ylide carbon has an ability to coordinate to metal ions, and many ylide—metal complexes which contain ylide carbon—metal bonds have been prepared [1]. Ylides stabilized by a carbonyl group adjacent to a ylide carbon atom can also interact with metal ions, through the carbonyl oxygen atom. In fact, triphenylphosphoranylidene-acetone is known to coordinate to chlorotrimethyl-tin(IV) through the carbonyl oxygen [2], while dimethylsulfonium phenacylide and dimethylsulfonium 2-pyridylcarbonylmethylide form the palladium(II) and platinum(II) complexes involving the ylide carbon-to-metal bond [3–5].

Although several ylide-tungsten(0) complexes containing the ylide carbon-to-metal bond have been prepared [6-10], no bonding scheme of carbonylstabilized ylides to a tungsten(0) moiety is known.

This paper reports the preparations of tungsten(0) carbonyl complexes with dimethylsulfonium, triphenylphosphonium, and 4-methylpyridinium phenacylides (I), and the corresponding 2-pyridylcarbonylmethylides (II). The configurations and properties of these complexes are discussed on the basis of ¹H NMR, IR, and electronic absorption and emission spectra.

Experimental

Dimethylsulfonium 2-Pyridylcarbonylmethylide, $C_5H_4NC(O)\overline{CHSMe_2}(Y_{Py-S})$

A solution containing 2-(bromoacetyl)pyridine [11] (2.5 g, 12 mmol) and dimethylsulfide (1.6 g, 25 mmol) in methanol (25 cm³) was stirred for 3 h at room temperature, and evaporated to dryness under reduced pressure. The resulting product was dissolved in water (10 cm³), followed by addition of a 4 mol dm⁻³ NaOH aqueous solution (10 cm³). After stirring for 0.5 h the solution was shaken with dichloromethane (20 cm³) several times. The dichloromethane layer was evaporated to dryness. The product was recrystallized from a mixture of dichloromethane and petroleum ether to give white hygroscopic needles (0.57 g, 25% yield). M.p. 51–52 °C. Anal. Found: C, 59.67; H, 5.94; N, 7.65%. C₉H₁₁-NOS Calcd.: C, 59.64; H, 6.12, N, 7.73%.

© Elsevier Sequoia/Printed in Switzerland

^{*}Author to whom all correspondence should be addressed.

Triphenylphosphonium 2-Pyridylcarbonylmethylide, $C_5H_4NC(O)\overline{C}H\overline{P}Ph_3(Y_{Py-P})$

A chloroform solution (10 cm³) of triphenylphosphine (0.69 g, 2.6 mmol) was added to 2-(bromoacetyl)pyridine (0.53 g, 2.6 mmol) in chloroform (10 cm³). After being stirred for 20 h at room temperature, the solution was evaporated to dryness under reduced pressure to afford an oily material, to which diethyl ether (30 cm³) was added and stirred, giving a precipitate. This was collected by filtration, and dissolved in a 1 mol dm⁻³ NaOH aqueous solution (80 cm³). The solution was refluxed for 2 h to separate out a rubberlike solid, which was filtered and recrystallized from a mixture of dichloromethane and petroleum ether, giving colorless cubic crystals (0.42 g, 42% yield). M.p. 129-133 °C. Anal. Found: C, 75.15; H, 5.41; N, 3.43%. C25H20NOP·H2O Calcd .: C, 75.17; H, 5.55; N, 3.51%.

Other Ylides

4-Methylpyridinium 2-pyridylcarbonylmethylide (Y_{Pp-N}) [5], 4-methylpyridinium phenacylide (Y_{Ph-N}) [12], dimethylsulfonium phenacylide (Y_{Ph-S}) [13], and triphenylphosphonium phenacylide (Y_{Ph-S}) [14] were prepared according to literature methods.

Phenacylide-Tungsten(0) Complexes

To W(CO)₅THF prepared by the UV irradiation of $W(CO)_6$ (0.50 g, 1.4 mmol) in THF (70 cm³) [15] was added a THF solution (20 cm^3) of Y_{Ph-S} (0.23 g, 1.3 mmol) at 5-10 °C. After being stirred for 2 h below 10 °C, the solution was concentrated to about a half volume under reduced pressure, followed by addition of petroleum ether (40 cm^3). The solution was allowed to stand at about 5 °C overnight to give a yellow precipitate of $W(CO)_5 Y_{Ph-S}$, which was collected by filtration and dried in vacuo (0.43 g, 60% yield). M.p. 66-70 °C. Anal. Found: C, 35.36; H, 2.30%. C₁₅H₁₂O₆SW Calcd.: C, 35.74; H, 2.40%. W(CO)₅THF photo-generated from W(CO)₆ (0.50 g, 1.4 mmol) reacted similarly with Y_{Ph-P} (0.49 g, 1.3 mmol) and Y_{Ph-N} (0.27 g, 1.3 mmol) to afford a yellow precipitate of $W(CO)_5 Y_{Ph-P}$ (0.31 g, 50% yield) and a brown precipitate of $W(CO)_5 Y_{Ph-N}$ (0.42 g, 60% yield) respectively. $W(CO)_5 Y_{Ph-P}$, M.p. 122-125 °C. Anal. Found: C, 53.02; H, 3.21%. C31H21O6PW Calcd.: C, 52.86; H, 3.01%. W(CO)5- Y_{Ph-N} , M.p. >95 °C (decomp.). Found: C, 42.71; H, 2.73; N, 2.70%. C₁₉H₁₃NO₆W Calcd.: C, 42.64; H, 2.45; N, 2.62%.

2-Pyridylcarbonylmethylide-Tungsten(0) Complexes

W(CO)₅ THF obtained from W(CO)₆ (0.5 g, 1.4 mmol) reacted with Y_{Py-S} (0.24 g, 1.3 mmol) in THF at 5-10 °C to yield red crystals of W(CO)₄- Y_{Py-S} (0.31 g, 50% yield). M.p. >300 °C. Anal. Found: C, 32.65; H, 2.27; N, 3.01%. C₁₃H₁₁NOSW

Calcd.: C, 32.72; H, 2.32; N, 2.94%. A brown complex with the same composition was isolated as a benzene solvate by the reaction of $W(CO)_6$ (0.33 g, 0.9 mmol) with Y_{Pv-S} (0.21 g, 1.1 mmol) in benzene (70 cm^3) ; the reactant solution was irradiated by UV light at room temperature for 5 h, during which time the evolution of CO ceased and a brown precipitate of $W(CO)_4 Y_{Py-S}$ separated out. The precipitate was collected by filtration, washed with benzene, and dried in vacuo (0.29 g, 56% yield). M.p. >140 °C (decomp.). Anal. Found: C, 36.70; H, 2.55; N, 3.10%. C13H11NOSW 1/2C6H6 Calcd.: C, 37.22; H, 2.73; N, 2.71%. The UV irradiation on a mixture of $W(CO)_6$ (0.33 g, 0.9 mmol) with Y_{Py-P} (0.42 g, 1.1 mmol) or Y_{Py-N} (0.23 g, 1.1 mmol) in benzene (70 cm^3) similarly afforded a brown precipitate of $W(CO)_4 Y_{Py-P}$ (0.33 g, 50% yield) or a violet precipitate of $W(CO)_4 Y_{Py-N}$ (0.29 g, 60% yield). $W(CO)_4$ - Y_{Py-P} , M.p. >115 °C (decomp.). Anal. Found: C, 54.49; H, 3.26; N, 1.89%. C₂₉H₂₀NO₅PW·2/3C₆H₆ Calcd.: C, 53.93; H, 3.32; N, 1.92%. W(CO)₄Y_{Py-N}, M.p. >240 °C (decomp.). Found: C, 40.12; H, 2.30; N, 5.44%. C₁₇H₁₂N₂O₅W Calcd.: C, 40.18; H, 2.38; N, 5.51%.

Spectra

Electronic and IR absorption spectra were recorded on Hitachi 124 and 215 spectrophotometers respectively. ¹H NMR spectra were measured with a JEOL JNM-PS-100 spectrometer (operating at 100 MHz at 24 °C), using TMS as the internal standard. Emission spectra were measured with a Hitachi MPF-3 spectrophotometer. All the spectral measurements were carried out for the complexes dissolved in degassed or nitrogen gas-purged solvents, because the complexes are oxygen-sensitive in solution.

Results and Discussion

Configurations of the Ylide-Tungsten(0) Complexes The ¹H NMR spectrum of $W(CO)_5 Y_{Ph-S}$ in acetone- d_6 showed the ylide methine proton (H_a) signal at 6.69 δ accompanied with satellites due to spin-spin coupling with the ¹⁸³W nucleus (²J(¹⁸³W- H_a) = 5.1 Hz), which confirms the coordination of Y_{Ph-S} to tungsten through the ylide carbon atom. The coordination of the ylide carbon is compatible with the appearance of two S-methyl proton signals (3.19 and 2.89 δ) owing to asymmetry of the ylide carbon. Such a coordination mode is also supported by the fact that the IR ν (C=O) band occurred at a higher frequency than that of the free ylide (Table I) [3]. On the other hand, no spin-spin coupling between the ¹⁸³W nucleus and the ylide methine proton has been noticed in the ¹H NMR spectrum of $W(CO)_5 Y_{Ph-P}$ in acetone-d₆. Moreover, the coupling constant between the ³¹P nucleus and the ylide

TABLE I. Relevant IR Frequencies (cm^{-1}) of $W(CO)_5 Y_{Ph-Z}$ in THF.

Y _{Ph-Z}	v(C≡O)	ν (C=O) ^a			
	A ₁ (2)	B ₁	Е	A ₁ (1)	
Y _{Ph-S}	2060	1968	1923	1897	1617 (86)
Y _{Ph-P}	2066	1972	1918	1862	1490 (-36)
Y _{Ph-N}	2059	1973	1916	1861	1536 (14)

 $^{a}\nu_{complexed} - \nu_{free}$ in parentheses.

methine proton of the complex (24.0 Hz) was very close to that of the free ylide (25.5 Hz). This is in contrast with a small coupling constant (5.9 Hz) in Pd^{II}Cl(Bu^t₂NO)Y_{Ph-P}, having a ylide carbonpalladium bond [16]. These findings suggest the coordination of Y_{Ph-P} to tungsten through the carbonyl oxygen atom. This is compatible with the fact that the ν (C=O) band of the complex did not appear above 1500 cm⁻¹ in the solid state and in THF. The coordination via the carbonyl oxygen atom is also suggested for W(CO)₅Y_{Ph-N}.

The three phenacylide complexes display four $\nu(C\equiv O)$ bands which are analogous to the spectra of $W(CO)_5L$ (L = amines, sulfides and tertiary phosphines) [17, 18]. These $\nu(C\equiv O)$ frequencies are 10-50 cm⁻¹ lower than those of $W(CO)_5L$, suggesting that both the ylide carbon and carbonyl oxygen atoms of the phenacylides coordinate to the $W(CO)_5$ moiety as a weaker π -acceptor than sulfides and tertiary phosphines, and as a somewhat stronger σ -donor than amines.

Two isomers of $W(CO)_4 Y_{Py-S}$ were isolated: red and brown. The red complex in THF exhibited the $\nu(C=O)$ band at 6 cm⁻¹ lower frequency than that of free Y_{Py-S} . The ¹H NMR spectrum of the complex in THF gave an S-methyl proton signal (2.99 δ). These findings are in contrast with the facts that the coordination through the ylide carbon results in a higher frequency shift of the $\nu(C=O)$ vibration and the appearance of two S-methyl proton signals, as seen in $W(CO)_5 Y_{Ph-S}$ and $PtCl_2 Y_{Py-S}$ [4]. Thus, the present complex seems to assume the coordination through the carbonyl oxygen atom in this solvent. The coordination through the pyridyl nitrogen is supported by the fact that the H₆ signal occurred at a considerably low field compared with that of free ylide. The chelation of Y_{Py-S} to tungsten through the carbonyl oxygen and pyridyl nitrogen atoms is compatible with an X-ray crystallographic analysis for the red form complex of $W(CO)_4 Y_{Py-S}$ [19].

On the other hand, the ν (C=O) band of the complex in DMSO was observed at 9 cm⁻¹ higher frequency than that of free ylide (Table II). Furthermore, in THF-DMSO mixtures the complex displayed two ν (C=O) bands, whose relative intensities varied with the ratios of the two solvents (Fig. 1). The configuration of W(CO)₄Y_{Py-S} in DMSO would

Fig. 1. The ν (C=O) bonds of W(CO)₄Y_{Py-S} in THF-DMSO mixtures; the volume ratios (THF:DMSO) in parentheses.

TABLE II. Relevant IR Frequencies (cm⁻¹) and ¹H NMR Chemical Shifts of H₆ Signals for W(CO)₄Y_{Py-Z}.

Y _{Py-Z}	Medium	ν(C≡O)				ν(C=O) ^a	δ H ₆ ^b
Y _{Py-S} (red form)	Nujol	2002	1897	1845	1781	1524 (5)	
Y_{Py-S} (brown form)	Nujol	1995	1865	1828	1780	1540 (21)	
Y _{Py-S} ^c	THF	1998	1873	1858	1813	1526 (6)	9.06 (0.67)
., 0	DMSO	1993	1860	1846	1799	1542 (9)	8.93 (0.48)
Y _{Py-P}	Nujol	1994	1875	1841	1782	1514 (3)	
191	THF	1997	1868	1860	1814	1513 (-9)	9.00 (0.54)
	DMSO	19 9 7	1866	1848	1799	1525 (-1)	8.91 (0.41)
Y _{Py-N} ^d	Nujol	1999	1899	1839	1761	1502 (-26)	
x y 14	DMSO	1993	1858	1843	1797	1502 (-24)	9.07 (0.61)

 ${}^{a}\nu_{complexed} - \nu_{free}$ in parentheses. ${}^{b}\delta_{complexed} - \delta_{free}$ in parentheses. c Both the red and brown form complexes exhibited the identical spectra in the solutions. d Too insoluble in THF for the measurement.

therefore be different from that in THF. Although two ν (C=O) bands due to the two species were observed in THF-DMSO mixtures, no separated ¹H NMR signals of the coordinating ylides appeared. Furthermore, all the signals were not varied by the addition of free Y_{Py-S} . These findings indicate a fast interconversion between the two species on the NMR time-scale. Coordination to tungsten through the ylide carbon is implausible in DMSO, since the high frequency shift of the ν (C=O) band upon complexation is too small and the ¹H NMR spectrum of the complex showed only an S-methyl signal. The H₆ signal occurred at a fairly low field compared with that of free ylide, which indicates the coordination through pyridine nitrogen. Thus, assuming a hexacoordinated tungsten moiety in DMSO, the species (III) proposed in THF seems to change to the species (IV), in which both nitrogen and a DMSO molecule

coordinate to tungsten, but the carbonyl oxygen and ylide carbon atoms do not participate in the coordination. This may be ascribed to a strong coordination ability of DMSO to metal ions [20]. Although the configuration of the brown isomer in the solid state has not been determined in the present paper, its IR and ¹H NMR spectra in THF or in DMSO are identical with those of the red form complex.

 $W(CO)_4 Y_{Py-P}$ is likely to have a similar configuration around tungsten to $W(CO)_4 Y_{Py-S}$, since their behaviors in ¹H NMR and IR spectra have been essentially the same. The $\nu(C=O)$ band of $W(CO)_4 Y_{Py-N}$ in the solid state and in DMSO was observed at a lower frequency than that of the free ylide, suggesting that Y_{Py-N} is linked to tungsten through the carbonyl oxygen atom in both the states.

Electronic Absorption and Emission Spectra of the Complexes

Figure 2 shows the electronic absorption spectrum of $W(CO)_5 Y_{Ph-S}$ in 2-MeTHF. The absorption bands in the region of 300-450 nm were almost unchanged in DMSO at room temperature, and also in 2-MeTHF at 77 K. Since tungsten-to-ligand charge transfer bands observed for several $W(CO)_5L$ (L = pyridine and its derivatives) were reported to depend significantly on solvents and temperature in the measurements [21], the bands at 368 and 418 nm in the present complex are not likely to be due to tungstento-ligand charge transfer transition, but tentatively assigned to ¹A-¹E and ¹A-³E ligand field d-d transitions, respectively, as reported in several $W(CO)_{s}L'$ (L' = amines) [22]. Furthermore, the band at 336 nm is reasonably assigned to a transition from tungsten to $\pi^*(C \equiv O)$ [23].

Fig. 2. Absorption (---) and emission spectra (--) of $W(CO)_5Y_{Ph-S}$ in 2-MeTHF at 298 and 77 K respectively.

TABLE III. Absorption (at 298 K) and Emission (at 77 K) Maxima (nm) for W(CO)5- and W(CO)4YPy-Z in 2-MeTHF.

Complex	Absorption $(\log \epsilon)$						
	$W \rightarrow \pi^* (C \equiv 0)$	${}^{1}A_{1} \rightarrow {}^{1}E$	${}^{1}A_{1} \rightarrow {}^{3}E$	$(W \rightarrow Y_{\mathbf{Py}-\mathbf{Z}})CT$	$^{3}E \rightarrow {}^{1}A_{1}$		
W(CO) ₅ Y _{Ph-S}	336 (3.6)	368 (3.5)	418 sh		540 (420)		
$W(CO)_5 Y_{Ph-P}$ $W(CO)_5 Y_{Ph-N}$	333 (4.0) b	418 (3.7) b	464 sh b		515 (454) d		
W(CO) ₄ Y _{Py-S}	310 (4.3)	411 sh		467 (3.7)	Not observed		
W(CO) ₄ Y _{Py-P}	312 (4.3)	430 sh		486 (3.9)	Not observed		
W(CO) ₄ Y _{Py-N}	310 (4.0)	с		558 (4.0)	Not observed		

^aExciting wavelengths (nm) maximizing the emission intensities in parentheses. ^bA broad band was observed at 427 nm ($\log \epsilon = 4.2$). ^cThe ligand field d-d bands were obscured by the intraligand charge transfer band (367 nm, $\log \epsilon = 4.22$) and the CT(W Y_{Py-N}) one. ^dAlthough a weak emission was observed at 483 nm (excitation maximum, 440 nm), the emission may be due to the intraligand charge transfer transition.

 $W(CO)_5 Y_{Ph-S}$ exhibited a weak emission in 2-MeTHF at 77 K (Fig. 2), although no emission was observed for the complex at room temperature and for free Y_{Ph-S} even at 77 K. The excitation wavelength (420 nm) which maximized the emission intensity essentially agreed with the wavelength of ¹A-³E transition band at 77 K. Thus, the observed emission seems to be ascribed to the ${}^{3}E^{-1}A$ transition, as reported in many $W(CO)_5 L'$ complexes (L' = amines) [21]. Similar absorption and emission spectra were observed for $W(CO)_5 Y_{Ph-P}$. On the other hand $W(CO)_5 Y_{Ph-N}$ showed an intense absorption band at 427 nm (loge = 4.2) in 2-MeTHF, which may obscure the ligand field d-d bands (Table III). This intense band is reasonably assigned to a transition due to the charge transfer between the ylide carbon and pyridinium nitrogen atoms, which was observed in the absorption spectrum of Y_{Ph-N} in the same solvent (451 nm, $\log \epsilon = 4.0$). The occurrence of this band for the metal complex indicates a preserved planar sp^2 configuration around the ylide carbon atom which resulted from the coordination through the carbonyl oxygen atom.

In the absorption spectra of $W(CO)_4 Y_{Py-S}$ in 2-MeTHF the band observed at the longest wavelength at room temperature showed a blue shift at 77 K (Fig. 3). In addition, the band occurred at a higher frequency in acetonitrile than in 2-MeTHF. Thus, this band is reasonably assigned to tungsten-to-ylide charge transfer transition, in view of the similar temperature and solvent dependences of tungsten-toligand charge transfer bands of some $W(CO)_4L-L$ complexes (L-L=1,10-phenanthroline [24] and

Fig. 3. Electronic absorption spectra of $W(CO)_4Y_{Py-S}$ in 2-MeTHF at room temperature (---) and 77 K (---).

diazabutadiene [25]). The longest wavelength bands of $W(CO)_4 Y_{Py-P}$ and $W(CO)_4 Y_{Py-N}$ also exhibited a similar spectral behavior to that of $W(CO)_4 Y_{Py-S}$. $W(CO)_4 Y_{Py-Z}$ (Z = S, P and N) exhibited no emission in 2-MeTHF or in MeOH/EtOH (1:4 V/V), even at 77 K.

Acknowledgment

We thank Professor Toshio Tanaka for his continuous encouragement throughout this study.

References

- 1 H. Schmidbaur, Acc. Chem. Res., 8, 62 (1975).
- 2 J. Buckle, P. G. Harrison, T. J. King and J. A. Richards, *Chem. Comm.*, 1104 (1972); J. Chem. Soc. Dalton, 1552 (1975).
- 3 H. Koezuka, G. Matsubayashi and T. Tanaka, Inorg. Chem., 13, 433 (1974); 15, 417 (1976).
- 4 G. Matsubayashi, Y. Kondo, T. Tanaka, S. Nishigaki and K. Nakatsu, Chem. Lett., 375 (1979).
- 5 G. Matsubayashi and Y. Kondo, J. Organometal. Chem., 219, 269 (1981).
- 6 K. A. O. Starzewski, H. T. Dieck, K. D. Franz and F. Hohmann, J. Organometal. Chem., 42, C35 (1972).
- 7 L. Weber, J. Organometal. Chem., 142, 309 (1977).
- 8 L. Weber, Z. Naturforsch., 31b, 780 (1976).
- 9 K. A. O. Starzewski and H. T. Dieck, *Inorg. Chem.*, 18, 3308 (1979).
- 10 F. R. Kreissl and W. Held, Chem. Ber., 110, 799 (1977).
- 11 G. R. Clemo, W. McG. Morgan and R. Rapper, J. Chem. Soc., 965 (1937).
- 12 F. Krohnke, Chem. Ber., 68, 1177 (1935).
- 13 K. W. Ratts and A. N. Yao, J. Org. Chem., 31, 1185 (1966).
- 14 F. Ramirez and S. Dershowitz, J. Org. Chem., 22, 41 (1957).
- 15 W. Strohmeier, Angew. Chem., 76, 873 (1964).
- 16 M. Okunaka, G. Matsubayashi and T. Tanaka, Inorg. Nucl. Chem. Lett., 12, 813 (1976).
- 17 F. A. Cotton and C. S. Kraihanzel, J. Am. Chem. Soc., 84, 4432 (1962); Inorg. Chem., 2, 533 (1963).
- 18 E. W. Ainscough, E. J. Birch and A. M. Brodie, *Inorg. Chim. Acta*, 20, 187 (1976).
- 19 G. Matsubayashi, I. Kawafune, T. Tanaka, S. Nishigaki and K. Nakatsu, J. Organometal. Chem., 187, 113 (1980).
- 20 V. Gutmann, 'Coordination Chemistry in Non-Aqueous Solutions', Springer-Verlag, New York, 19 (1968).
- 21 M. S. Wrighton, H. B. Abrahamson and D. L. Morse, J. Am. Chem. Soc., 98, 4105 (1976).
- 22 M. Wrighton, Chem. Rev., 74, 401 (1974).
- 23 H. Saito, J. Fujita and K. Saito, Bull. Chem. Soc. Jpn., 41, 359, 863 (1968).
- 24 M. S. Wrighton and D. L. Morse, J. Organometal. Chem., 97, 405 (1975).
- 25 L. H. Staal, A. Terpstra and D. J. Stufkens, *Inorg. Chim.* Acta, 34, 97 (1979).