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The ‘H NMR spectra of the complexes fRuL3/- 
(BF,), are reported (L = 2,2’-bipyridine, 4,4’- 
dimethyl-2,2 ‘-bipyridine, 5,5’dimethyl-2,2’-bipyri- 
dine or IJO-phenanthroline). The relaxation behav- 
iour of the protons attached to the ligands has been 
studied, and TI measurements are shown to be a 
valuable aid in the assignment of the spectra of such 
complexes. TI measurements conjkn other chemical 
evidence for the unique nature of H3,3’ of coordi- 
nated 2,2 ‘-bipyridines, resulting from steric inter- 
actions. 

Introduction 

Tris(2,2’-bipyridine) complexes of transition metal 
ions have been known for many years [l-3], and 
have found applications in fields as diverse as colori- 
metric analysis [4] and solar energy conversion [5]. 
A number of recent observations have emphasised 
that the H3,3’ protons of the ligand (Fig. 1) possess 
a unique reactivity in such octahedral complexes. 
Thus, Constable and Seddon have demonstrated that 
these protons are acidic, and undergo deuterium 
exchange on treatment with strong bases in the 
presence of a deuteron source [6], whilst Serpone 
has characterised orthometallated iridium complexes 
in which the metal is directly bonded to Ca of the 
ligand [7]. It is likely that some of the well- 
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Fig. 1. The 2,2’-bipyridine ligand. 
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Fig. 2. The ‘H NMR spectrum (400 MHz) of [Ru(bipy)a]- 
(BF4)* in MeZCOd6. 

documented anomalies in the reactions of such com- 
plexes may be attributed to this hitherto undetected 
reactivity [8]. Many studies of cYp’-diimine com- 
plexes rely heavily on NMR techniques, and so it is 
very surprising that there have been few rigorous 
NMR studies of such complexes [9, IO]. This paper 
describes the use of Tr relaxation time measurements 
in the assignment of the ‘H NMR spectra of ruthe- 
nium(B) crp’-diimine complexes. 

Results and Discussion 

The 400 MHz ‘H NMR spectrum of [Ru(bipy)s] - 
(BF4)* is shown in Fig. 2. It is evident that on the 
‘II NMR time scale the two rings are equivalent. 
Simple decoupling experiments estabiished that the 
lowest field doublet at 6 8.827 was strongly coupled 
to the 6 8.225 multiplet, and that the 6 8.069 
doublet was strongly coupled to the 6 7.585 multi- 
plet, but it was not possible to determine whether the 
6 8.827 doublet was due to Ha or H6. Experience 
with simple heterocycles suggests that the lowest field 
resonance should be assigned to H6 [ 1 I] and, indeed, 
the lowest field doublet in the ‘H NMR spectrum of 
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TABLE I. Chemical Shift and Coupling Constant Data for Ruthenium(H) cr,u’-Diimine Complexes. 5 mmol solutions of the tetra- 
fluoroborate salts in CD3COCD3.400 MHz, 12 transients, 90” pulse, 30 “C. 

Compound Chemical Shift (6 ) Coupling Constants (Hz) 

H3 H4 HS H6 

[Wbiw)3 I 2+ 8.827 8.225 7.585 8.069 J5,6 5.5 Jqs 7.5 J3.4 7.8 

J3.5 1.1 J4,e I.4 

[Ru(5,5’-Me3bipy)3j2+ 8.680 7.380 7.823 Jsp 5.6 
[ Ru(5,5’-Mezbipy)3] 2+ 8.622 7.990 7.800 J4,6 1.8 J3.4 8.3 
bipy 8.491 7.920 7.410 8.680 JS,6 7.2 J4,e I.6 J3.4 7.6 

J3.5 I.0 J4,5 7.3 

[ Ru@hen)3 ]‘+ 8.418= 8.40Sb 7.811’ 8.798d 

aH5 and H6. bH4 and H7. ‘H3 and H8. dH2 and H9. 

TABLE II. Ti Relaxation Data for Ruthenium(H) &(I’- 
Diimine Complexes. 5 mm01 solutions of the tetrafluoro- 
borate salts in CD3COCD3. 400 MHz, 12 transients, IRFT, 
30 “c. 

Compound ‘II (W 

H3 H4 Hs H6 

I Ru@iw)s I 2+ 1.12 1.84 1.45 2.17 

[Ru(4,4’-Me3bipy)312+ 0.81 1.30 1.16 

fRuf5,5’-Me2bipy)3]2* 0.97 1.11 2.22 

bipy 6.37 5.72 6.22 6.67 

[ Ru(phW3 I’+ 1.77” 1.96b 1.51c 1.71d 

aH5 and H6. bH4 and H7. ‘H3 and H8. dH2 and H9. 

the free l&and is so assigned [ 121. However, prev- 
ious workers have assigned the lowest field reson~ce 
in the ‘Ii NMR spectrum of ~Ru(bipy)3J2+ to H3, 
claiming that the Van der Waals interactions resulting 
from the adoption of a cis con~gu~dtion of the Iigand 
results in a considerable (-0.4 ppm) deshielding of 
these protons [ 131. This steric effect is clearIy 
observed in the X-ray single crystal structure of 
[Ru(bipy)3](PF6)2 1141. We therefore investigated 
the ‘H NMR spectra of the ~thenium(II) com- 
plexes of 4,4’-dimethyl and .5,5’-dimethyl-2,2’-bipyri- 
dine (Figs. 3 and 4) in which the resonances due to 
H3 and H6 respectively may be unambiguously assign- 
ed (Table I) [ 15 ] , In each case the resonance assigned 
to I-f3 is seen to be at lowest field, and in order to 
confirm this assignment we have studied the Tr 
relaxation behaviour of the protons in these com- 
plexes. These results are presented in Table II. It is 
evident that the resonance assigned to Ha in each 
case shows a considerably more rapid T1 relaxation 
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Fig. 3. The ‘H NMR spectrum (400 MHz) of [Rug,4‘-Mea- 
bipy)3 ] (BE4)3 in MezCOds. 

time than the other protons in the molecule. This 
is precisely the behaviour which is expected if H3 
is sterically strained, since the Van der Waah inter- 
actions between H3 and Hj provide an efficient 
relaxation mechanism [ 161. It is p~ticularly gratify- 
ing to observe such a rapid relaxation in-the 4,4’- 
dimethyl substituted compound, in which there is no 
strong coupling to provide a spin-spin relaxation 
mechanism. In the case of the 5,5’-dimethyl-2,2’- 
bipyridine complex, it is now immediately evident 
that the low field doublet at 6 8.622 may be 
assigned to H3, and the high field doublet at 6 7.99 
to H4. This is the same assignment which simple 
chemical shift arguments suggest. It is now possible 
to return to the [Ru(bipy)~12+ spectrum, and it is 
now obvious that the lowest field doublet must be 
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Fig. 4. The ‘H NMR spectrum (400 MHz) of [Ru(5,5’-Me*- 
bipy)3] (BF4)2 in MezC0d.c. 

assigned to H3, as suggested by previous authors. 
The foal assignments for these complexes, and 
also for [Ru(phen)3]2+ and bipy are shown in Table 
I. The spectrum of the l,lO-phenanthroline complex 
does not show a strongly deshielded resonance, nor 
does it possess one proton environment relaxing 
considerably more rapidly than the others; this is 
entirely in accord with the absence of the 3,3’ 
protons in this ligand. The relaxation times of all the 
protons of the 2,2’-bipyridine are increased on coordi- 
nation to ruthenium, and this is exactly the effect 
expected, since interaction with the quadrupolar 
ruthenium nucleus will provide an efficient mecha- 
nism for relaxation. 

Experimental 

The complexes RuL~(BF~)~ (L = 2,2’-bipyridine, 
4,4’-dimethyl-2,2’-bipyridine, 5,5’-dimethyl-2,2’- 
bipyridine, or 1 ,lO-phenanthroline) were prepared by 
the method of Seddon and Anderson [ 171. The 
ligands 4,4’-dimethyl-2,2’-bipyridine and 5,5’- 
dimethyl-2,2’-bipyridine were prepared by the dimeri- 
sation of the appropriate pyridine in the presence of 
palladium-charcoal and pyridine N-oxide [ 181. 

All NMR spectra were recorded at 30 “C on a 
Bruker WH-400 spectrometer, using the solvent 
deuterium signal as an internal lock. T1 measure- 
ments were made using an inversion-recovery Fourier 
Transform (IRFT) method, with a (n - 7 - n/ 

2 - At - D)n (n = 12) sequence. All solutions were 
degassed by bubbling nitrogen through for five 
minutes prior to recording the spectra. 

Conclusions 

In conclusion, T1 measurements provide a sensitive 
means for the assignment of ‘H NMR spectra of 
crp’diimine complexes, and provide an insight into 
important non-bonding interactions. In particular, 
we have demonstrated that the HSZ’ protons of 
coordinated 2,2’-bipyridines show unique properties, 
and that the abnormal chemical properties associated 
with these protons are reflected in physical measure- 
ments. 
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