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The method of points on a sphere is employed to 
determine three types of eleven-coordinated poly- 
hedra. These are: a pen tacapped trigonal prism (D3h), 
a monocapped pentagonal antiprism (CSv), and a 
skewed trigonal prism with an interpenetrating 
pentagon (C2v). Associated relative repulsive energies 
for various particle potentials and polar coordinates 
are reported. 

Introduction 

In the past two decades increased research related 
to lanthanide and actinide compounds has generated 
unusual coordination geometries, especially those 
with high coordination numbers. The majority of the 
compounds of the lanthanoid series favors eight or 
nine ligands in the coordination shell. With increasing 
lanthanide cation size and small hard ligands, higher 
coordination systems are expected. Several systems, 
other than alloys, having a coordination number (CN) 
of eleven have been reported. Thorium nitrate penta- 
hydrate [l, 21 has eight oxygen atoms from four 
bidentate nitrate groups and three other oxygen 
atoms from water molecules. Another elevencoordi- 
nated thorium complex has been reported by Johans- 
son [3]. Further, uranium trifluoride [4] can also be 
described as having a CN of eleven as well as CeFa 
[S] and LaFs [S, 61. The lack of idealized eleven- 
coordinate geometries to serve as models has often 
produced inadvertent misassignment of bonding 
arrangements. This paper reports three idealized 
model systems for a CN of eleven. 

Method and Results 

The method of points on a sphere involving inter- 
particle repulsions was employed in the determina- 
tion of the model systems. Claxton and Benson [7] 
have outlined an algorithm which allows ready 
convergence (zero tangential force) of test systems 
with varing particle potentials which are in the form 
of a Born exponent. 
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The coordinate of each ligand, of a set ocrn identi- 
cal ligands, can be represented by a vector Ri (for the 
i th particle). The ‘points on the sphere’ method 
requires that the distances of the ligands t,o the 
central atom are equal. Therefore this vector Ri can 
be normalized. 

gi 
- Ri 

^ 
r- 
IRrl 

where Ri is a unit vector (1) 

The repulsive energy between each ligand can be 
expressed as 

m-l m 
E = x z ]Ri - iijl-n where n is the Born 

i=l i=i+l exponent. (2) 

The repulsive force acting on the i th ligand is: 

gi = _VE = n 2 (Ri _ Rj)lRi _ Rjl-@+z). (3) 
i-1 
j#i 

V is the divergence along the direction of Ri - Rj. 
The new position of Ri is obtained by allowing the i 
th ligand to move in the direction of the resultant 
force acting on it. Usually, this results in the depar- 
ture of the point representing the ligand from the sur- 
face of the coordination sphere. Thus a renormaliza- 
tion of the ligand-central atom distance is required. 
The new position of the i th ligand is 

Ri (new) = (Ri + rGi)/lRi + rl?il (4) 

where y is a scalar which determines the extent of 
displacement. y equa& (K/F& where F, is the 
maximum value of IFi] and i = 1 to m and K is be- 
tween 0.1 and 0.2. 

This ‘points on a sphere’ method seeks a balance 
of repulsive force between the ligands rather than an 
energy minima. This balance requires that the tangen- 
tial force on each ligand is zero. This tangential for_ce 
can be shown by using the dot pro_duct of Ri and Fi. 
Zero tangential force means that Fi is normal to the 
tangential plane on the sphere at point Ri. 
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~i’iii= l~il’l~il COS e (5) 

where O_ is the angle between the force pi and Ri. 
Since IRil = 1 from eqn. (l), eqn. (5) becomes 

Gi*Eii= IGil COS 0. (6) 

pi and Ezi are in the same direction only if 6’ ap- 
proaches zero and cos 0 = 1. In an interative proce- 
dure, the convergence criteria is met if 

where E is a small number arbitrarily chosen to 
define convergency. 

Three idealized geometries described in Cartesian 
terms are found at ligand repulsion energy minima. 
Table I gives the repulsive energies at the zero tangen- 
tial force condition for varing values of the Born 
exponent. The three determined 11 -coordinate geo- 
metries are the pentacapped trigonal prism (D3h), the 
monocapped pentagonal antiprism (CSv), and a 
skewed trigonal prism with an interpenetrating 
pentagon (C2v). The polar coordinates of the eleven 
ligands for these three cases are listed in Table II. 

TABLE I. Repulsive Energies (arbitrary units) at Zero 
Tangential Force. 

n D3h c5v c2v 

1 40.6221 40.6152 40.5968 
2 31.9123 31.8789 31.8348 
3 26.4922 26.4017 26.3366 
4 23.0092 22.8232 22.7530 
5 20.6856 20.3631 20.3107 
6 19.0684 18.5710 18.5616 
7 17.8911 17.1862 17.2428 
8 16.9942 16.0565 16.1978 
9 16.2813 15.0926 15.3322 

Discussion 

Table I shows that for the eleven particles on a 
sphere the C2v distribution is the most stable (lowest 
repulsive force) for 1 < n < 6. For higher values of n 
(the Born exponent), the monocapped pentagonal 
antiprism arrangement should be favored. It should 
be emphasized that this applies to systems with 
equivalent ligands; nonequivalent or bidentate 
ligands can approximate these arrangements but may 
not necessarily adhere to them. 

a b 
Fig. 1. The pentacapped trigonal prism (D3h). Note the 
five member plane in a. The C3 rotational axis is along 
L2-c-LS. 

The pentacapped trigonal prism is illustrated in 
Fig. la and lb. This type of 11 -coordinated poly- 
hedron is the most symmetrical of the three 
presented geometries but has the highest repulsive 
force (see Table I). The general arrangement 
resembles the classical ninecoordinated tricapped tri- 
gonal prism except the prism is shorter and has two 
additional caps located above and below the trigonal 
apical planes. The two apical capping ligands and the 
central atom lie on a three-fold axis of rotation. This 
particular form also contains three five-member 
planes intersecting the central atom. 

TABLE II. Spherical Angular Coordinates (“) for D3h, CSv, C2v Configurations. 

D3h 

PHI CHI 

c5v 

PHI CHI 

c2v 

PHI CHI 

0.00 0.00 0.00 0.00 0.00 0.00 
0.00 59.06 0.00 66.08 0.00 59.65 

120.00 59.06 72.00 66.08 0.72 122.73 
240.00 59.06 144.00 66.08 180.06 122.73 

60.00 90.00 216.00 66.08 180.77 59.65 
180.00 90.00 288.00 66.08 59.96 82.25 
300.00 90.00 36.00 122.86 90.39 144.21 

0.00 120.94 108.00 122.86 120.81 82.25 
120.00 120.94 180.00 122.86 300.69 83.13 
240.00 120.94 252.00 122.86 270.39 145.25 

0.00 180.00 324.00 122.86 240.08 83.13 
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TABLE III. Angles and Distances (sphere radius = 1.00, n = 6). 

D3h c5v c2v 

Ll-C-L2 90.00 Ll-C-L2 66.08 Ll -C-L2 59.70 
Ll-C-L5 90.00 Ll-C-L7 122.86 Ll-C-L5 59.70 
L2-C-L3 59.06 L2-C-L3 72.00 L2-C-L3 63.10 
L2-C-L5 180.00 L7-C-L8 72.00 L4-C-L5 63.10 
L6-L3-L9 60.00 L3-C-L4 114.50 
LlO-L7-Ll 60.00 L8-L7-L6 54.00 
L8-Lll-L4 60.00 Lll-LlO-L9 54.00 

L8-L6-L7 63.00 
Lll-L9-LlO 63.00 
Ll-L7-LlO 72.60 
Ll-LlO-L7 72.10 
L7-Ll-LlO 35.30 

L2-L5 2.00 Ll-L2 1.09 Ll-L2 0.99 
L2-L3 0.99 L2-L3 1.07 L2-L3 1.05 
L2-LlO 1.41 L2-L7 1.09 L3-L4 1.68 
L3-L9 1.49 L6-L8 1 .oo 
L3-LlO 1.07 L6-L7 1.10 
LA-L10 1.07 L8-Lll 1.71 
L4-L5 0.99 L6-L9 1.71 

L7-LlO 1.16 

a b a b 
Fig. 2. Two views of the monocapped pentagonal antiprism 
(C5v). The monocap is directly over the center in b. A Cs 
rotational axis exists along Ll-C. 

Fig. 3. The skewed trigonal prism with an interpenetrating 
pentagon (C2v). The five member plane can be seen in a. The 
Cz rotational axis is along Ll-C. 

The monocapped pentagonal antiprism (C5v) is 
presented in Fig. 2a and 2b. The presented arrange- 
ment is expected for this type of geometry. The 
ligands on each pentagonal plane are separated by an 
angle (72”) defined by the two involved ligands and 
a central point on the plane. The L-L distance in this 
arrangement is greater for the capped plane. The 
lower pentagonal plane is rotated 36” with respect to 
the capped plane. 

The geometry of the C2v case (shown in Fig. 3a 
and 3b) exhibits a five-member horizontal plane 
which is orthogonally bisected by the L(l)-L(7)- 
L(l0) plane. The four remaining ligands are sym- 
metrically located, two on each side of this vertical 
mirror plane. The C2 rotational axis is observed along 
the bond formed by the central atom (C) and Ll. 

This polyhedron resembles the D3h case. The primary 
difference between the two types (D3h and C2v) is 
related to the bond angles on the five member planes. 
Note that angles Ll-C-L;! and Ll -C-L5 in cases 
D3h and C2v are 90.00” and 59.70”, respectively. 
Important bond angles and distances are given in 
Table III. 

Most reported eleven CN systems appear to fit 
C2v geometry. A text example is the monodentate 
trifloride, CeFa [5], which fits very well. IaFs [5, 
61 is similar to CeF, [5]. These two systems favor the 
C2v over the D3h case because distortion is found 
about the D3h required equatorial plane. This bi- 
secting plane is not parallel to the apical trigonal 
planes of the prism. Bidentates, such as the thorium 
compounds [l-3], approach this C2v arrangement 
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but have some distortions about the five member 
interpenetrating plane. UFs [4] can also be described 
by C2v geometry; there is only a slight shift out of 
plane by one of its ligands. A search for other ll- 
coordinate compounds is ongoing. 
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