¹¹⁹Sn and ¹⁹⁵Pt NMR Spectroscopy of SnCl₃⁻ Complexes of Platinum and **Palladium. Some Chemistry of the Complexes** $(\text{Ph}_4\text{P})_2 [\text{PtCl}_4]$ **and** $[\text{Pt}(\mu\text{-Cl})\text{Cl}(\text{PEt}_3)]_2$ **with SnCI,**

P. S. PREGOSIN* and H. RÜEGGER

Laboratorium für Anorganische Chemie, ETH Zentrum, Universitätstrasse 6, CH-8092 Zürich, Switzerland

Received September 24, 1983

*l19Sn and 19'Pt NMR solution data for the complex anions cis-[PdCI, (SnC13)*² *IPdCI*, $Pd^2 = (Pd)^2$, $Pd^2 = (Pd)^2$, $Pd^2 = (Pd)^2$ *[PtCI(SnC13)3/2, [Pt(SnC13)4/2-, [PtH(SnC13)4/3-* μ is $\left(\frac{P(t)}{q} \right)$, $\left(\frac{P(t)}{P(t)} \right)$, $\left(\frac{P(t)}{P(t)} \right)$, $\left(\frac{P(t)}{P(t)} \right)$ and $[PH(SnCl₃)₂(PEt₃)₂]$ ⁻ are reported and compar-
ed with those for known related complexes. An *increasing number of SnC13--1igands per metal results in deshielding of the "'Sn, but a shielding of the 19'Pt nuclei. The values 'J(19'Pt, "'Sn) and 2J(119Sn, '17Sn) are found to be especially useful probes for molecular structure in this chemistry. Reaction of the complexes sym-trans-[PtCl(* μ *-Cl)L]₂, L = PEt₃, PTo13, AsEt,, with one and two equivalents of* $SnCl₂$ *leads to [PtClL(p-Cl)₂Pt(SnCl₃)L] and symtram-[Pt(p-Cl)(SnC13)L], respectively, and these com*pounds have been characterized by ¹¹⁹Sn, ¹⁹⁵Pt and *31P NMR spectroscopy,*

Introduction

Mixtures of platinum or palladium salts with excess tin(II) chloride are recognized as being homoexcess tin(II) chloride are recognized as being homogeneous hydrogenation catalysts $[1, 2]$. Such mixtures contain trichlorostannate complexes and several studies have shown that the anions cis -[PtCl₂- $(SnCl₃)₂$ ²⁻ and $[Pt(SnCl₃)₅$ ³⁻ are stable, isolatable $\left[3-7\right]$ and, in some cases $\left[8, 9\right]$ useful catalyst precursors. As part of our continuing interest in the procursors. As part of our continuing interest in the m_{max} and m_{max} and m_{max} approximate, m_{max} m_{max} $\frac{1}{2}$ spectra of solutions containing $\frac{1}{2}$ spectra of solutions containing varying $[MCl_4]^{2-}/$
SnCl₂ ratios, M = Pd, Pt, and have identified several S_1C_1 and S_2 , $M = 14$, M , and have identified severally the reactions of the dimeric complexes *sym-trans-*

 $[{\bf D}_t(\cdot,C_t)\cap T]$ ${\bf T} = {\bf D}$ Et, ${\bf D}^{\text{th}}$ ${\bf 1}$, ${\bf T}$, ${\bf C}$ ${\bf 1}$, ${\bf C}$ ${\bf H}$, ${\bf C}$ $\mu_{\text{c}}(p\text{-}c_1)c_1c_1c_2$ is $\mu_{\text{c}}(q\text{-}c_1)$ in the hope of gaining insight. and AsEt_3 with SnCl_2 in the hope of gaining insight into how and where the SnCl_2 attacks the transition metal. We report here on our multinuclear NMR studies in both of these areas.

Results and Discussion

Reactions of (Ph4P)2[PtC14 J, with SnClz

The chemistry of $SnCl₂$ with $[PtCl₄]²⁻$ can be described qualitatively by the following equations:

$$
[PtCl4]^{2-} + SnCl2 \xrightarrow{CH2Cl2}
$$

$$
[PtCl_3(SnCl_3)]^{2-}, (I) \qquad (1)
$$

CH2C12 $\frac{112}{12}$

$$
[PtCl3(SnCl3)]2- + SnCl2 \xrightarrow{\text{CH}2Cl2}
$$

CDCl₃

cis-
$$
[PtCl_2(SnCl_3)_2]^{2-}
$$
, (II) (2)

$$
cis
$$
- $[PtCl_2(SnCl_3)_2]^{2-}$ + SnCl₂ $\xrightarrow{CH_2Cl_2}$
CDCl₃

$$
[\text{PtCl}(SnCl_3)_3]^{2-}, (\text{III}) \tag{3}
$$

 $[PtCl(SnCl₃)₃]²⁻ + SnCl₂$ CH2C12 $\overline{\text{C}}$ 13

$$
[Pt(SnCl3)4]2-, (IV)
$$
 (4)

0 Elsevier Sequoia/Printed in Switzerland

^{*}Author to whom correspondence should be addressed.

Fig. 1. ^{195}P t NMR spectrum of the $[PtCl(SnCl₂)₂]²⁻$ anion. There are two $\frac{1}{1}$ ($\frac{195}{P}$ t, $\frac{119}{P}$ Sn) values as well as two $\frac{1}{1}$ ($\frac{195}{P}$ t 117 Sn) values. 5^{195} Pt = -482

$$
[Pt(SnCl3)4]2- + SnCl2
$$

acetone
HCl

 $[Pt(SnCl₃)₅]^{3-}$, (V) (5)

In reaction (5) the fifth $SnCl₃⁻$ ligand can be generated either by direct addition of a suitable salt, e.g. $(Ph_4P)SnCl_3$, or by addition of excess $SnCl₂$. Complexes (I), (II) and (V) have been described previously $[3-5, 15]$; (III) and (IV) are new and warrant further discussion.

Compound (III) is the major component* of the reaction of $(\text{Ph}_4\text{P})_2$ [PtCl₄] with three equivalents of $SnCl₂$ and its $195p₁$ NMR spectrum is shown in Fig. 1. The different ${}^{1}I(195P_{t}$, $11\dot{9}S_{n})$ couplings, 21448 Hz and 24236 Hz, arising from the isotopomers (VI)-(VIII) are clearly visible, as are the appropriate

¹¹⁷Sn splittings (¹¹⁹Sn and ¹¹⁷Sn have I = ½, with 8.6% and 7.6% natural abundance, respectively). The differences in intensity between the satellite lines are accounted for by statistical arguments, *i.e., both* (VII) and (VIII) contribute to $1J(195Pt)$, $^{119}Sn(A)$, but only (VI) to $^{1}J(^{195}Pt, ^{119}Sn(B))$. The 119Sn NMR spectrum of (III) shows signals centered at δ = -78 for Sn(A), with the observed value of 21448 Hz in agreement with that found for $1J(195Pt)$, 119Sn in the 195Pt spectrum. The smaller signals from the *three* types of $2J(119Sn, 117, 119Sn)$, arising from (IX) - (XI) , could also be observed.

Fortunately, these various isotopomers can be identified as there is now a substantial literature concerning ²J(¹¹⁹Sn, ¹¹⁷Sn)_{cis} and ²J(¹¹⁹Sn, ¹¹⁷Sn)_{trans} in square planar complexes $[11-13, 16]$.

As expected [13], the resonance at $\delta = -78$ shows a very large 2 J(¹¹⁹Sn, ¹¹⁷Sn)_{trans} value of 43689 Hz stemming from (X) and a much smaller $2J(119Sn)$, ^{117}Sn _{cis} coupling of 2039 Hz, arising from (XI).

The >40 KHz two-bond coupling for two *trans* $SnCl₃$ ligands is no longer surprising, especially since the value found in the trans- $[PtCl(SnCl₃)₂$ - (PEt_o) ⁻ anion is larger at 46582 Hz $[16]$. There is a 119 Sn signal at $\delta = -228$ which we tentatively assign to $\text{Sn}(\bar{B})^{**}$.

Complex (IV) is obtained by reacting the $[PtCl₄]$ ²⁻ anion with four equivalents of $SnCl₂$ in $CH_2Cl_2/CDCl_3$. Its ¹⁹⁵Pt spectrum is centered at δ = -5615 and one-bond couplings to both ¹¹⁹Sn and 117 Sn are clearly observable, e.g. 1 J(195 Pt, 119 Sn) = 19421 Hz. The relative intensities of the tin satellites [17] are consistent with a formulation having four equivalent $SnCl₃⁻$ ligands. The ^{119}Sn signals for (IV) are centered at $\delta = -20$, and the relative intensities of the 117 Sn satellites as well as the presence of both $^{2}I(119Sn, 117Sn)$, = 1835 Hz, and $^{2}I(119Sn, 117Sn)$ μ_{rms} = 29882 Hz further support the struc ture assigned to this complex.

There are relatively few tetrakis $SnCl₃$ -platinum complexes and those which have been characterized are usually five-coordinate, e.g., $[Pt(SnCl₃)₄(PEt₃)]²$ which we recently prepared $[16]$ and $[PH]$ $(SnCl_a)$, 1^{3-} prepared earlier $[18]$ for which we give new NMR data in Table I. Since $[Pt(SnCl₃)₅]^{3-}$ is a hydrogenation catalyst [9], and assuming that a coordinatively unsaturated species activates the hydrogen, perhaps affording $[PtH(SnCl₃)₄]$ ³⁻ or some related platinum hydride, (IV) may be a catalyst precursor resulting fron $SnCl₃^-$ dissociation from the pentakis complex. The recognition of

^{*}The reaction mixture also contains the *cis-*[PtCl₂- $(SnCl₃)₂$]²⁻ and the [Pt(SnCl₃)₅]³⁻ ions as well as the [Pt-(SnCl₃)₄]²⁻ ion.

^{**}Although the value of $1-(195Pt, 119Sn(B))$ observed in the 119 Sn spectrum agrees with that found in the 195 Pt spectrum, the intensity of the signal at $\delta = -228$ is \approx one *sixth*, and not one half of that found at $\delta = -78$. We have no explanation for this observation.

Chemical shifts in ppm, coupling constants in Hz. $\frac{b_{\text{Relative to ext. (CH}_3)_{\text{4}}\text{Sn.}}}{c_{\text{4}}^{2} \cdot \frac{1}{2}}$ $\frac{3}{1}$ standard temp. $\frac{3}{1}$ and R_{max} . Naz R_{max} and R_{max} $27.6D \cdot C1.32K$ $\frac{400}{10}$ Relative to Ext. $\frac{132}{100}$ Florence 1326, 1926, 1326

(III) and (IV) in solution shows that polytrichlorostannate complexes with between one and five coordinated $SnCl₃⁻$ ligands are all relatively stable materials.

Reactions of $[PdCl_4]^2$ *⁻ with SnCl₂*

The identification of the products resulting from reactions of $[{}PdCl_4]^{2-}$ with ${}SnCl_2$ is more difficult as we do not have the spin $I = \frac{1}{2}$ metal to assist us; $\frac{1}{2}$ nevertheless, based on $\frac{1195}{2}$ and the magnitude of magnitude of magnitude of magnitude of $\frac{1}{2}$ $I(I^{119}Sn, 117Sn)$ and the relative $I^{17}Sn$ satellite intensities, we have identified complexes (XII) and (XIII). Compound (XII) is observed in \sim 95% NMR yield* at

 δ = -242 when the tetrachloropalladate dianion reacts with two equivalents of tin(I1) chloride $(CH_2Cl_2/CDCl_3)$. The assignment of the *cis* isomer for (XI) follows from the modest value of 1575 Hz observed for ²J(119S_n, 117S_n). The *trans coupling* would be in excess of 20000 Hz [13]. The relative intensities of the '17Sn satellite lines confirm that there are only two coordinated $SnCl₃⁻$ ligands.

The five-coordinate (XIII) oils out of a CH_2Cl_2 / CDCl₃ solution when $(Bu_4^mN)_2$ [PdCl₄] is treated with five equivalents of tin(I1) chloride and one equivalent of $(Bu_4^mN)Cl$, but redissolves upon addition of a few drops of acetone. Its ¹¹⁹Sn NMR spectrum shows the expected series of lines centered at δ = +68, with an average 2 J(119 Sn, 117 Sn) of 7460 Hz. Interestingly, for $(XIII)$ we observe a broad ^{119}Sn signal at room temperature which sharpens to the expected group of lines at -20 °C. Since we observe chemically equivalent $SnCl₃⁻$ ligands at this low temperature, the intramolecular scrambling is still rapid. Consequently, we attribute the broad line at room temperature to $SnCl₃⁻$ exchange. This con t_{total} transfer t_{total} of t_{total} and t_{total} and t_{total} $[3]$ for the $[2]$ (S_{nC}) $[3]$ ⁺, species, which shows $\frac{1196}{120}$ resonances at ambient probe temperasharp ¹¹⁹Sn resonances at ambient probe tempera-
ture.

NMR Trends

There are several NMR features worth noting:

1. Increasing the number of coordinated $SnCl₃$ ligands shifts δ^{195} Pt to successively *higher* field.

2. Increasing the number of coordinated $SnCl₃^$ ligands shifts δ^{119} Sn to successively *lower* field.

3. There is a *cis* effect of SnCl_3^- on $^1\text{J}(^{195}\text{Pt})$, $\frac{9}{5}$ increase that such that such that such $\frac{1}{5}$ for $\frac{1}{5}$ for $\frac{1}{5}$ **bit)** such that substitution of bitch for C₁, cis to a second $SnCl₃⁻$, decreases this coupling constant.

4. ² J(¹¹⁹Sn, ¹¹⁷Sn)_{trans} is always $>$ ² J(¹¹⁹Sn, $^{117}Sn)_{cis}$.

5. The values for $2J(^{119}Sn, 117Sn)$ are larger in the five-coordinate complexes than in the four-coordinate *cis* complexes. This is understandable if we assume that there is an averaging of $2J_{trans}$ and ${}^{2}J_{cis}$ in the five-coordinate compounds due to intramolecular exchange. This relatively large $2J$ observed

^{*}There are two small resonances at δ^{119} Sn = -207 and -227 , each \approx 2 - 3%.

Fig. 2. Plots of δ^{119} Sn vs. 1 J(195 Pt, 119 Sn) for (top) the complexes $[PLC]_n(SnCl_3)_{(4-n)}^2 = \begin{cases} n, & \text{snip} \text{ for (top) the complex} \\ n = 0-3, & \text{[PLC]}_n. \end{cases}$ $(SnCl₃)_{(3-n)}(AsMe₃)$, $n = 0-3$, and (bottom) a variety of trichlorostannate complexes from references 10-14 and 16.

in the five-coordinates might be helpful in distinguishing a square planar from a trigonal bipyramidal compound. Observations 2 and 3 are illustrated graphically in Fig. 2, together with some additional data from earlier studies [16].

Clearly, the *combined cis and trans* effects are resulting in an approximately linear relationship between δ^{119} Sn and 1 J(195 Pt, 119 Sn) for these two series of molecules. Attempts to expand this correlation *via* the use of our full data base [10-14, 16] leads to significant deviations from linearity (see Fig. 2, bottom) although a general trend isstill observable. We consider curves such as that shown in the figure to be useful empirical aids in assigning the structure of unknown trichlorostannate complexes.

Fig. 3. Experimental 195 Pt NMR spectrum of [Pt(μ -Cl)- $(SnCl₃)(PEt₃)₂$, c, with simulations for the spectrum with two 195 Pt atoms, a, and for the composite of all the isotopomers involving platinum, *b.* δ^{195} Pt = -432

Reactions of Dimeric Complexes

Although $SnCl₂$ reacts with many transition metal halogen bonds to give trichlorostannate complexes $[5-\overline{7}, 10-14]$, there is no accepted mechanism for this reaction. To obtain some qualitative insight into this area we have studied the reactions of $SnCl₂$

as shown in (7). Reaction with one equivalent of $SnCl₂$ in $CH₂Cl₂/CDCl₃$ leads to a mixture of (XV) and (XVI) plus some unreacted starting material. The mono $SnCl₃^-$ complex (XVa) is readily identified from its ¹⁹⁵Pt NMR spectrum. There are two distinct ¹⁹⁵Pt absorptions of equal integral at $\delta = -3419$ and -4270 which are coupled to one another, ²J(¹⁹⁵Pt, 195 Pt) = 238 Hz. The higher field signal has a 1 J(195 Pt, 119 Sn) value of 33642 Hz; however, there is no observable tin coupling to the lower field platinum. The ³¹P spectrum provides complementary data in that there are two ³¹P resonances of equal integral with $4J(^{31}P, ^{31}P) = 3 Hz$, and only one of these shows an observable coupling to tin. A summary of all of these data is given in Table II.

Addition of a second equivalent of $SnCl₂$ affords primarily (XVI). The dimeric nature of (XVIa) is supported by the observation of a ²J(¹⁹⁵Pt, ¹⁹⁵Pt) coupling, 531 Hz (see Fig. 3), and the remaining NMR parameters are consistent with this formulation*. (XVIb) and (XVIc) were assigned by analogy.

^{*}Please for footnote see overleaf.

TABLE II. NMR Data* for the Dimeric Complexes.

L_{a} \sim Pt _b											
L	$\mathbf{X}_{\mathbf{a}}$	$X_{\bf b}$	$\delta P t_a$	$\delta P t_{\bf b}$	δSn	δP_a		$\delta P_{\bf b}$ ¹ J(Pt,Sn) ¹ J(Pt,P)		2J(Pt,Pt)	2J(Sn,P)
PEt ₃	Cl	C1	-3409		10.3			3850			
	Cl	SnCl ₃	$-3419 -4270$		-355	11.2 12.5		33642	3814 3490	238	238
	SnCl ₃	SnCl ₃	-4320		-383		12.2	35309	3480	531	238
PTola	Cl	C1	-3353		3.3			4065			
	C1	SnCl ₃	$-3293 -4157$		-385	1.5	5.6	33890	4004 3660		224
	SnCl ₃	SnCl ₃	-4178		-425	5.0		35278	3721		215
AsEt ₃	C1	Cl —	-3069								
	Cl	SnCl ₃	$-3045 -4170$		-412			32519			
	SnCl ₃	SnCl ₃	-4231		-440			33691			

* ^{195}Pt , ^{119}Sn and ^{31}P chemical shifts are relative to external Na₂ [PtCl₆], (CH₃)₄Sn and H₃PO₄, respectively.

Furthermore, we have crystallized (XVIa) and confirmed its dimeric structure by X-ray diffraction [14]. It would seem that for molecules of type (XIV), $SnCl₂$ does not split the halogen bridges, in contrast to the behavior of nucleophilic nitrogen, phosphorus and arsenic ligands [19]. Conceivably, the $SnCl₂$ chooses to attack electrophilically at the relatively electron-rich terminal Cl⁻, or alternatively a carbenelike insertion is possible. It may also be that the tin lone-pair coordinates to the platinum without bridge cleavage. All three of these possibilities are shown as $(XVII)$ - (XIX) . Although there is some support for a structure similar to (XVII) in

the complexes *trans*- $IrCl(SnCl₂)(CO)(P(p-XC₆ [H_4]_3)_2$] [20], and $[Ag(SnCl_3)(PP)]$, PP = 2,11bis(diphenylphosphinomethyl)benzo [c] phenanthrene [21], the compounds $[MoCl(SnCl₂CH₃)(CO)₃$ $(2,2-bipyridyl)$ [22], [WCl(SnCl₂CH₃)(CO)₃(CH₃- $SCH₂CH₂SCH₃)$] [23] contain structural units relat-

ed to (XVIII). It may well develop that the choice between (XVII)-(XIX), and perhaps others, will be dictated by the metal and its ligand.

Acknowledgements

We thank the E.T.H. Zürich for support and the Johnson Matthey Research Centre, England for the loan of platinum salts.

Experimental

The ¹⁹⁵Pt and ¹¹⁹Sn NMR spectra were measured using a Bruker WM-250 spectrometer as described previously $[11-13]$. The solutions for the measurements were prepared as follows:

Preparation of the [PtCl_{3-n} $|SnCl_3|_n$]²⁻ Ions

A solution of $(\text{Ph}_4\text{P})_2[\text{PtCl}_4]$ (203 mg, 0.20 mmol) in 5 ml $CH₂Cl₂$ was treated with solid $SnCl₂$ $(n \times 38 \text{ mg}, n \times 0.2 \text{ mmol})$ and then stirred for *ca*. 24 h. The solvent was removed $i.v.$ and the resulting solid dissolved in $CH_2Cl_2/CDCl_3$, 1:1, and the NMR spectra recorded. The five coordinate $[Pt(SnCl₃)₃)₅]$ ³ was prepared according to literature methods [9].

Preparation of the cis-[PdCl₂(SnCl₃)₂]²⁻ and [Pd- $(SnCl₃/₅)³⁻ Anions$

 $(Bu_4^mN)_2[PdCl_4]$ (73.3 mg, 0.10 mmol) was dissolved in 3 ml $CH_2Cl_2/CDCl_3$, 1:1, and then treated with solid $SnCl₂$ (38 mg, 0.20 mmol) at room temperature for 2 h. The resulting solution was employed directly for the NMR measurement. The

SnCl₂ does not insert between two platinum atoms. This would result in two large ${}^{1}I(195p_1, 119Sp_1)$ values. See Goodfellow and Herbert, Inorg. Chim. Acta, 65, L161 (1982).

 $[Pd(SnCl₃)₅]$ ³⁻ was prepared similarly except that a) solid (Bu₄N)Cl was added directly after the 5 a) some (μ aliv) α was added directly after the β $\frac{d}{dx}$ bits $\frac{d}{dx}$ and $\frac{d}{dx}$, the resulting on was dissolved by the addition of a minimum amount of acetone.

Preparation of the Dimers (XV) and (XVI)

The complexes (XV) may be generated by adding $\frac{1}{10}$ S_nCl₁ (19 mg, 0.10 mg, 0.1 some shear $(12 \text{ m}, 0.10 \text{ mm})$ to a solution con taining 0.1 mmol of $(XIVa-c)$ in 3 ml CH_2Cl_2 /
CDCl₃. Further addition of $SnCl_2$ (19mg, 0.10 mmol) affords the symmetrical dimers (XVIa-c).

References

- R. D. Cramer, E. L. Jenner, R. V. Lindsey, Jr. and U. G. K. D. Cramer, E. L. Jenner, R. V. Lindsey, . Stolberg, J. Am. Chem. Soc., 85, 1691 (1963).
- *Res. Develop., 11,* 146 (1972). Res. Develop., *II*, 146 (1972).
- *2415 (1982).* J. H. Nelson and N. W. Alcock, Znorg. *Chem., 21,* 1196
- $(1, 0.00)$ (1982) .
I. Nelson, V. Rudolph, Inorg. Inorg. Inorg. Inorg. In the Rudolph, Inorg.
- J. H. Nelson, V. Cooper and R. *Nucl. Chem. Letters, 16, 263 (1980).*
- *Russ. J. Inorg. Chem., 21, 1348 (1976).*
- *7* J. F. Young, R. D. Gillard and G. Wilkinson, *J.* Chem. J. F. Young, K. 8 *Soc.*, 5176 (1964).
- *3283 (1971). 9* H. Nowatori, K. Hirabayashi and I. Yasumori, *J. Chem.*
- *Sot. Faraday, 2785* (1976). $100C$. Faraaay, $2/85(19/6)$.
- A. Albinati, R. Naegeli, K. H. A. Ostoja Starzewski, P. S. Pregosin and H. Rüegger, *Inorg. Chim. Acta*, 76, L231 (1983). 1, M. Kretschmer, P. S. Pregosina and M. Garratte, *P. S. Pregosina and M. Garra*lda, *J. Organo-*
- *m.* Kretschmer, P. S. Pregosii met. Chem., 244, $1/5$ (1983).
- *Organomet. Chem., 241, 87 (i983). Organomet. Chem., 241, 87 (1983).*
- 13 K. H. A. Ostoja Starzewski, P. S. Pregosin and H. Rüegger, Helv. Chim. Acta, 65, 785 (1982).
- 14 A. Albinati, R. Naegeli, H. Rüegger and P. S. Pregosin, Angew. Chem., 94, 310 (1982).
- 15 R. Goodfellow, unpublished results.
- 16 A. Albinati, P. S. Pregosin and H. Rüegger, submitted to *Inorg. Chem.*, 1983. *to Inorg. Chem.*, 1983.
- κ , κ , κ appendix and κ , κ , mental Research in Homogeneous Catalysis', ed. M. Tsutsui, Plenum Press, N.Y., 1979, p. 997.
- 18 R. D. Cramer, R. V. Lindsey, Jr., C. T. Prewitt and U. G. Stolberg, *J. Am. Chem. Soc.*, 87, 658 (1965).
- 19 J. Chatt and L. M. Venanzi, *J. Chem. Soc.*, 3858 (1955).
- 20 M. Kretschmer and P. S. Pregosin, *Inorg. Chim. Acta, 61*, 247 (1982). *24 (* 198*2*).
- M. Barrow, H. B. Burgi, M. Camalli, F. Caruso, E. Fischer, L. M. Venanzi and L. Zambonelli, *Inorg. Chem.*, 22, 2356 (1983). *22*, 2356 (1983).
- *22* M. Elder and D. Hall, *Inorg. Chem.*, *8*, 1268 (1969).
-