$\frac{1}{2}$ inetics and Mechanism of the Acid-Catalysed Ring Opening of *cis*- $[Co(en)_2$ - $(\beta$ -alaO)]²⁺

ROBERT W. HAY and ARUP K. BASAK

Chemistry Department, University of Stirling, Stirling FK9 4LA, U.K. Received July 13, 1982

The preparation of cis- $\left[C_0(\epsilon n)_2(\beta-\epsilon a a O) \right] I_2$ *is described. Ring opening of the complex occurs in acidic solution. Kinetic studies establish that the reaction shows a first-order dependence on (H+J* with rate = k_H Complex $/H^+$. Values of k_H have *been determined over a temperature range giving* H^{\pm} = 59.9 kJ mol⁻¹ and ΔS_{20}^{\pm} = -50 J K⁻¹ m^{-1} . The solvent deuterium isotope effect k_D of *kn,o for the ring opening process is 2.4, consistent with a mechanism involving a rapid pm-equilibrium protonation step followed by slow rate-determining ring opening. Mechanisms involving concerted attack* by H^+ and H_2O are excluded.

Introduction

The opening of chelate rings in cobalt(II1) complexes in acidic solution is well documented. Detailed kinetic studies have been reported for phosphato $[1]$, oxalato $[2]$ and carbonato $[3]$ complexes. Little kinetic and mechanistic information is available on the opening of amino-acid chelate rings in acidic media. Fastrez and Daffe [4] have recently studied the protonation equilibrium, $[Co(en)_2(glyO)]^{2+}$ + $D^+ \rightleftharpoons$ $[Co(en)_2(glyOD)]^{3+}$ in strongly acidic solution by ¹H nmr spectroscopy. A pK_{BH}+ of ca. -1.5 to -1.6 can be obtained from the data. The complex has a similar basicity to 5-chloro-2-nitroaniline $(pK_{BH^+} = -1.52)$ [5] indicating half protonation in $4.5-5$ *M* HNO₃ [5]. Boreham and Buckingham [6] have recently investigated oxygen exchange and chelate ring opening in $[Co(en)_2(\text{glyO})]^{2+}$. Some 6% of the ring opened aqua glycinate complex is present at equilibrium in $1 \, M \, \text{HClO}_4$.

For other investigations we required information on the stability of $[Co(en)_2(\beta$ -alaO)]²⁺ in acidic media. The present paper describes kinetic and mechanistic work on the ring opening reaction.

Experimental

The complex cis - β -alaninatobis(ethylenediamine)cobalt(III) iodide, cis- $[Co(en)_2(\beta$ -alaO)] I₂ was prepared as follows. β -Alanine (0.04 mol) was dissolved in water (20 cm³) containing sodium hydroxide (0.04 mol). The solution was heated to ca. 60 \degree C and trans- $[CoCl₂(en)₂]$ Cl (0.04 mol) in water (7 cm') added slowly. The solution was maintained at 60° C for ca. 20 min with continuous stirring, then filtered. The filtrate was allowed to cool and a slight excess of NaI in water $(1-2 \text{ cm}^3)$ added. Crystals were obtained on refrigeration. The product was recrystallised three times from a dilute aqueous solution of NaI, then thoroughly dried *in vacua.* Hydrates can be characterised depending upon the degree of drying. The complex was isolated as shining red crystals. *Anal.* Calc. for $C_7H_{22}N_5O_2Col_2$ (M = 521.03) C, 16.14; H, 4.26; N, 13.44. Found C, 15.94; H, 4.20; N, 13.56%. The ir spectrum (KBr disc) has sharp ν NH bands at 3190 and 3100 cm⁻¹. A sharp and at 1653 cm⁻¹ is assigned to vCOO(asym) and a broader band at 1627 cm^{-1} is probably δNH . A weaker band at 1363 cm^{-1} is probably ν COO⁻-(sym). The visible spectrum has λ_{max} 506 nm (ϵ = $36 M^{-1}$ cm⁻¹) and 354 nm ($\epsilon = 171 M^{-1}$ cm⁻¹) in aqueous solution. The complex $[Co(en)_2(glyO)]$ Cl as λ_{max} 487 nm (ϵ = 98 M^{-1} cm⁻¹) and λ_{max} 346 m $(e = 107 \text{ M}^{-1})$ cm⁻¹) [7]. Cis-[CoCl(en)₂NH₂- $CH_2CH_2CO_2H$ Cl₂ was prepared as described for the corresponding glycine derivative [7] .

Kinetics

The reaction was monitored at 285 nm where a substantial decrease in absorbance occurs. Reactions were carried out using nitric acid solutions (due to the limited solubility of the complex in perchlorate media) and adjusted to $I = 0.1$ *M* with $KNO₃$. Values of the observed first order rate constants (k_{obs}) at constant hydrogen ion concentration were computed from plots of log $(A_t - A_\infty)$ versus time. Each rate constant is the mean value of triplicate runs. All reactions were monitored using a Gilford 2400s spectrophotometer, thermostatted by circulating water.

Additional spectral measurements including interval scan spectra were made with a Perkin-Elmer 402 spectrophotometer. Infrared measurements were made with a Perkin-Elmer 457 instrument using KBr discs.

Results and Discussion

Marked visible spectral changes occur on dissoluon of $[Co(en)_2(\beta_2|aO)]^{2+}$ in dilute HNO₂ solutions $(5 \times 10^{-3}$ M to 20×10^{-3} M). Aqueous solutions of the complex have λ_{max} 506 nm (ϵ = 186 M^{-1} cm⁻¹) and 354 nm ($\epsilon = 171$ M^{-1} cm⁻¹). The 'infinity' spectrum in nitric acid has λ_{max} 484 and 348 nm. Mercury(II) catalysed aquation of cis - $[CoCl(en)_2$ - $NH₂CH₂CH₂CO₂H$ in dilute nitric acid solution gives a product with λ_{max} 493 and 350 nm.

The spectral changes observed with $[Co(en)_2(\beta$ alaO)²⁺] in nitric acid are consistent with ring opening of the β -alaninato ring (eqn. 1):

$$
(en)_{2^{C_{1}}C_{2}}\times\int_{0}^{NH_{2}-CH_{2}^{2}}^{2+}H^{+}H^{+}H_{2^{O}}\xrightarrow{1^{(11)}C_{1
$$

Opening of the six-membered chelate ring is apparently more favourable than opening of the five-membered glycinato ring. It has been estimated that only $ca. 6\%$ of the aqua glycinate complex is in equilibrium with $[Co(en)_2(glyO)]^{2+}$ in 1.0 M HClO₄ (K = 0.06) $[6]$.

Ring opening of $[Co(en)_2(\beta$ -alaO)]²⁺ in dilute nitric acid solutions is a quite rapid process. Thus in 0.01 M HNO₃ at 25 °C, $t_{1/2}$ is 1.8 min. The kinetic data obtained is summarised in Table I.

Plots of k_{obs} (the observed first order rate constant at constant hydrogen ion concentration) *versus* [H⁺] are linear passing through the origin, Fig. 1. The reaction shows a clean first order dependence on $[H^+]$ and values of k_H were determined from the slope of such plots $(k_{obs} = k_H[H^+])$.

A possible reaction scheme is shown in the Scheme.

For this scheme

kK [Complex] $[H^+]$ $\frac{1 + K[H^*]}{1 + K[H^*]}$ (2)

Under the conditions of the present experiments

 $K[H^+] \ll 1$ (the β -alaO derivative is not expected to have a markedly different basicity to the gly0 complex), so that equation (2) reduces to rate = kK[Complex] $[H^+]$ and $k_H = kK$. The temperature dependence of k_H was studied at the additional

TABLE I. Acid Catalysed Ring Opening of cis - $[Co(en)_2$ - $(\beta$ -alaO)]²⁺ at I = 0.1 *M* (KNO₃).⁸

Temp.	10^3 [H ⁺] (M)	$10^3 k_{obs}$ (s^{-1})	kн (M^{-1}) s^{-1}
25	5.0	3.24	0.65
	6.0	3.94	0.66
	8.0	4.94	0.62
	9.0	6.04	0.67
	10.0	6.22	0.62
	12.0	7.94	0.66
	14.0	8.88	0.63
	16.0	10.70	0.67
	20.0	13.13	0.66
30	8.0	7.71	0.96
	10.0	9.76	0.98
	12.0	11.52	0.96
	14.0	11.96	0.85
	16.0	14.80	0.93
35	1.0	1.52	1.52
	2.0	2.60	1.30
	4.0	5.55	1.38
	6.0	9.06	1.51
	9.0	13.04	1.45
40	1.0	2.33	2.33
	2.0	3.37	1.69
	3.0	5.76	1.92
	4.0	8.99	2.25
	5.0	11.89	2.38

^aUsing the following values of k_H (M^{-1} s⁻¹) 0.65 (25 °C); 0.94 (30 °C); 1.43 (35 °C) and 2.11 (40 °C) gives $\Delta H^{\frac{1}{2}}$ 58.8 kJ mo Γ^1 and $\Delta S^* = -51.4$ J K⁻¹ mol⁻¹ with a correlation coefficient of 0.9994 for the Eyring plot.

Fig. 1. The acid-catalysed ring opening of $[Co(en)_2(\beta$ alaO)] ²⁺ at 25 °C in HNO₃ solutions at I = 0.1 *M* (KNO₃).

emperatures of 30, 35 and 40 °C giving $\Delta H^{\ddagger} = 58.8$ J mol⁻¹ and $\Delta S_{2.98}^{\dagger} = -51$ J K⁻¹ mol⁻¹ (correlation coefficient = 0.9994 for the Eyring plot), Table I.

Previous¹⁸O work has established that for the acid-catalysed exchange process between H_2O^{18} and carboxylate groups bound to cobalt(III), discrimination between the two oxygen atoms is commonly observed [6]. Ring opening probably involves protonation of the 'carbonyl oxygen' in a rapid preequilibrium step followed by slow rate determining opening of the chelate ring with Co-O bond cleavage (Scheme). A further (if somewhat improbable) mechanism involving concerted attack by H⁺ and $H₂O$ can also be considered. These two mechanisms can be differentiated by the use of solvent deuterium isotope effects $[8]$. As $D₂O$ is less basic than $H₂O$, the substrate will be able to compete with the solvent for the deuterion in D_2O more effectively than for the proton in H_2O . For the stepwise pre-equilibrium mechanism (Scheme), $k_{D,0}/k_{H,0} > 1$. However, for a mechanism involving concerted attack by H⁺ and $H₂O$ a rate-determining proton transfer step would be involved and k_D o/kH α < 1.

he solvent deuterium isotope effect was determined at 25 °C, Table II, giving $k_{D_2O}/k_{H_2O} = 2.4$, a value completely consistent with the pre-equilibrium mechanism shown in the Scheme. Solvent deuterium isotope effects of 2.2-2.6 are observed for the decarboxylation of carbonato complexes of cobalt(III), which proceed by a similar pre-equilibrium mechanism and Co-O bond cleavage [8]. In addition there is quite a strong similarity in the activation parameters for the ring opening of carbonato and carboxylato complexes, Table III, suggestive of a similar mechanism.

Acknowledgement

We wish to thank the SERC for financial support and the award of a postdoctoral fellowship to one of us (AKB).

References

1 S. F. Lincoln and D. R. Stranks, *Aust. J. Chem., 21, 37* (1968); *21,57* (1968).

TABLE II. Solvent Deuterium Isotope Effect at 25 "C and $I = 0.1 M$.

Medium		$\frac{10^3 \text{k}_{\text{obs}}}{(s^{-1})}$ $\frac{k_{\text{H}}}{(M^{-1} s^{-1})}$	k_{D_2O}/k_{H_2O}
$9.92 \times 10^{-3} M DCl^a$	14.69	1.48	2.4
$10.0 \times 10^{-3} M$ HCl ^b	6.22	0.62	

 a_{D_2O} solvent. b_{H_2O} solvent.

TABLE III. Activation Parameters for the Acid Catalysed Ring Opening of Carboxylato and Carbonato Complexes of Cobalt(II1).

Complex	ΔH^{\ddagger}	ΔS_{2}^{\ddagger} 98 $(kJ \text{ mol}^{-1})$ $(J K^{-1} \text{ mol}^{-1})$	Ref.
$[Co(en)_2(\beta$ -alaO)] ²⁺	58.8	-51	This work
$[Co(o\text{-phen})_{2}(ox)]^{+}$	92.8	-78	2
$[Co(o\text{-phen})_2(\text{mal})]^+$	90.3 ^a	$-44a$	9
$[Co(NH_3)_4CO_3]^+$	64	-26	3
$[Co(en)_2CO_3]^+$	57.7	-31	3
$[Co(then)CO3]$ ⁺	46.4	-110	3
$[Co(\alpha\text{-}trien)CO_3]^+$	62.8	-21	3

aValues determined from k_{obs} rate constants in 1 *M* HCl as a non-linear acid dependence is observed.

- 2 See for example, J. Roy and D. Banerjea, J. Inorg. Nucl. *Chem., 38, 1313* (1976).
- See for example, T. P. Dasgupta and G. M. Harris, J. *Am. Chem. Sot., 93,91(1971).*
- J. Fastrez and V. Daffe, J. *Chem. Sot. Dalton Trans., 317* (1981).
- B. Wiberg, 'Physical Organic Chemistry', J. Wiley, ew York, N.Y., 1964, p. 296–297.
- C. J. Boreham and D. A. Buckingham, *Aust. J. Chem., 33, 27* (1980).
- M. D. Alexander and D. H. Busch, *Inorg. Chem., 5,* 1590 (1966).
- See for example, R. W. Hay and B. Jeragh, J. *Chem. Sot. Dalton Trans., 1343* (1979).
- B. Chattopadhyay, J. Roy and D. Banerjea, J. *Inorg. Nucl. Chem., 40,204l* (1978).