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Introduction 

(qS-CSH,)NiOs3(~-H)3(CO)g (complex 1) is 
obtained in good yields by treating under nitrogen 
[($-C5HS)Ni(CO)Iz with H~OS~(CO)~,, [I, 21 or, 
alternatively by reacting under Hz current [($- 
C,H,)Ni(CO)] 2 with Os3(CO)Lz [ 1,3] . The structure 
of 1 has been established by X-ray diffraction studies 
[2-41. 

Interest for this complex comes from its potential 
use in homogeneous hydrogenation catalysis [ 1 ] and 
from its high efficiency as a CO and COZ methana- 
tion catalyst when supported on alumina [5]. 

All the available evidence indicates high stability 
for 1; one could hence expect that it acts as a true 
cluster catalyst. This led us to carry out a detailed 
study of the reactivity of this complex. 

Here we report the reactions of 1 towards Group 
V donor ligands; good yields of monosubstituted 
derivatives corresponding to the general formula 
($-CsHS)NiOs3(~-H)3(C0)s(L) (L = Group V donor 
ligand) were obtained. These were characterized by 
means of elemental analyses, i.r. and ‘H N.M.R. 
spectroscopy; for some complexes F.A.B. mass 
spectrometry and 31P N.M.R. runs were also per- 
formed. 

Comments on the proposed structures of the com- 
plexes from spectroscopic data are made. 

Experimental 

All the reactions of complex 1 with the ligands 
were performed under dry N2 in dehydrated, 

refluxing heptane in the presence of anhydrous 
Me3N0 obtained by sublimation of commercial Me3- 
NO-2Hz0 (Fluka). 

The general procedure followed consisted of dis- 
solving or suspending complex 1 and a 2 to 1 molar 
excess of ligand, together with some milligrams of 
Me*NO, into the cold solvent under N2 and then 
heating to reflux. 

Blank experiments showed that decomposition 
only occurs when 1 is refluxed in the presence of 
Me,NO, without any ligand. The water content in 
Me3N0 after sublimation was checked by ‘H N.M.R. 

The following ligands were reacted with complex 
1 (in parentheses are given the reflux time, the 
yields of the derivatives calculated on 1 and the 
numbering of the complexes): 

Nitrogen Donors 
Benzonitrile (70 min, lo%, complex 2a), di- 

phenylamine (1 min, 20%, complex 2b). 

Phosphines, Arsine and Stibine 

Triphenylphosphine (70 min, SO%, complex 
3a); tri(o-tolyl)phosphine (5 min, 5070, complex 
3b); tris(cyclohexyl)phosphine (5 min, 60%, com- 
plex 3~); diphenylchlorophosphine (no monosubsti- 
tuted products); diphenylphosphine (15 min, 40%, 
complex 3d); triphenylarsine (5 min, lo%, complex 
3e); triphenylstibine (5 min, 50%, complex 3f). 

Phosphinoacetylenes 
Diphenylphosphinophenylacetylene (1 min, 70%, 

complex 4a); diphenylphosphinoisopropylacetylene 
(5 min, 60%, complex 4b). 

Bis(diphenylphosphino)methane, DPPM 
Reaction time 2 min, yields 60%, complex 5. 
The reaction mixtures were purified by prepara- 

tive t.1.c. plates; satisfactory elemental analyses were 
obtained for all the complexes (except 2b, because 
of the presence of excess of ligand) by means of an 
F & M 185 C, H, N Analyzer and a Perkin Elmer 
AAS spectrophotometer (See Table I). 

The i.r. spectra were obtained on a Perkin Elmer 
580 B (KBr optics) instrument; the ‘H N.M.R. spectra 
were obtained on a JEOL C 60 HL and on a Bruker 
CPX-200, this latter operating in F.T.; the 31P N.M.R. 
were registered on the Bruker CPX 200. 

Results and Discussion 

*This work is dedicated to the memory of Nerina Mossi 
Tortonese. 

The analyses and the physical and spectroscopic 
properties of complexes 2-5 are collected in Table 1. 
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TABLE I. Elemental Analyses, Physical and Spectroscopic Properties of Complexes 2, 3,4 and 5. 

Complex Physical Properties Elemental Analysis 

2a 

2b 

3a 

3b 

3c 

3d 

3e 

3f 

4a 

4b 

5 

dark grey-violet 

crystals 

dark grcy green 

solid 

dark grey-violet 

crystals 

dark grey-violet 

crystals 

dark grey-violet C% 31.15 (30.98) H% 3.71 (3.44) 
crystals Ni% 4.65 (4.88) OS% 47.80 (47.47) 
dark grey-violet C% 27.60 (27.11), H% 1.88 (1.73) 
needle-like crystals Ni% 5.10 (5.30). OS% 51.90 (51.51) 

dark grey-violet C% 31.84 (30.33), H% 2.10 (1.89) 
crystals Ni% 4.51 (4.78) OS% 47.0 (46.47) 
dark grey-violet C% 30.18 (29.21), H% 2.01 (1.82), 
flat square crystals Ni% 4.41 (4.61) OS% 45.15 (44.77) 
dark grey-violet C% 33.02 (32.82), H% 2.50 (1.92). 
solid Ni% 4.61 (4.86) OS% 47.30 (47.24) 

dark grey-violet C% 31.05 (30.70), H% 2.40 (2.15), 
prismatic crystals Ni% 4.84 (5.00). OS% 49.50 (48.61) 

dark grey-violet C% 35.12 (34.95), H% 2.51 (2.31) 
solid Ni% 4.26 (4.49) OS% 44.05 (43.69) 

C% 23.70 (23.44)d, H% 1.40 (1.28) 

N% 1.51 (1.37); Ni% 5.48 (5.73) 

OS% 56.12 (55.69) 

C% 37.0 (27.53) H% 2.40 (1.76) 

NY@ 3.51 (1.28), Ni% 3.15 (5.38) 

OS% 40.12 (52.31) (see text) 

see ref. 1 

C% 33.01 (33.23) H% 2.81 (2.62) 

Ni% 4.63 (4.78) OS% 46.90 (46.43) 

- 

223Ovs, 2076m, 2054~s 

201 Svs, 1992vs(b), 1980s(sh,b), 

1955m 

2076m, 2064m(sh), 2056vs, 

2015~s. 1980vs(b), 1935s(b) 

*7.50-7.90 m (SH, Ph), 6.0 s (SH, Cp), 

-16.20, -16.80 m (3H, hydrides) 

2075m, 2056vs, 2018vs, 

1997s, 199Os, 1950m 

2074m, 2055~ 2014~s 

1995s, 1988s, 1950 m(b) 

2075m, 2053vs, 2011 vs, 

1991s, 1983s(b), 1945m 

2076m, 2056vs, 2021vs, 

1998s, 1990~s 1959m(b) 

*7.30m (15H, Ph), 6.0s (SH, Cp), -16.05, 

-16.15d (2H, hydrides), -17.35s (lH, hydride) 

7.45m (12H, Ph), 6.22s (SH, Cp), 2.15s (9H, Me), 

-16.30, -16.40 (d, 2H, hydrides), 

-16.80s (1 H, hydride) 

*6.20s (5H, Cp), 1.20,1.80m (33H, Cy), 

-17.30m (2H, hydrides), -17.60m (3H, hydride) 

7.46m (lOH, Ph), 6.08s (5H, Cp), 8.32-6.45d (lH, P-H), 

-16.95, -17.00d (2H, hydrides), 
- 17.78s (1 H, hydride) 

2075m, 2056vs, 2014vs, 

1996~ 1989s 1950m(b) 

2075m, 2056s, 2014vs, 

1996s 198Os, 1952m 

2076m, 2056vs, 2022vs, 

1997s 1989~s 196lm 

2074m, 2054vs, 2021vs, 

1997s, 1988s(b), 1959m 

2075m, 2055~s 2017vs, 
1996s 1988vs(b), 1954m 

3’P (6, CHC13) -7.4, -12.02 (d, PPh,H) 

*7.60m (lSH,Ph), 6.30s(5H, Cp), -15.60m, 

-16.20m (3H, hydrides) 

*7.43m (15H, Ph), 6.17s (SH,Cp), -17.50 

-17.78 (3H, hydrides) 

7.64, 7.44m (15H, Ph). 6.09s(SH, Cp), 

-16.61, -16.65d (2H, hydrides), -17.77s (lH, hydride) 

31P (6, CHC13) -8.34 (Ph2PC2Ph) 

7.39m (lOH,Ph), 6.07s (SH, Cp), 3.01m (lH, C-H), 

1.36, 1.33d (6H, Me), -16.61, -16.66d (2H, hydrides) 

-17.79s (lH, hydride) 

7.25s (20H, Ph), 6.07s (SH, Cp), 3.61,5.56d (2H, CH2), 
-16.57, -16.63d (2H, hydrides), -17.70s (lH, hydride) 

31P (6, CHCls) 17.2, 15.95d (coordinated DPPM phospho- 

rus), -22.33, -23.5d (free DPPM phosphorus)e 
v 

1.r. (VCO, C7Hte). cm-’ ‘Hand 31P N.M.R.a.b*C 

?n parentheses integrated intensities and attribution. bThe ‘H (6, ppm) were obtained in CDCla solution. Internal standard for the “P, HaP04. ‘The spectra marRei 
obtained on the JEOL C 60 HL (single scansion); due to the low solubility of the samples high signal/noise ratio made difficult the attribution of the multiplicities. 

(*) were 
d 
L 

theses the calculated values. eFree DPPM ligand, -21.8s. 
In paren- Q 

n s 
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a) b) c) 

Fig. 1. Isotopic patterns for the parent ions of complexes 1 and 3a (F.A.B. mass spectrometry). From left: (a) found, complex I; 

(b) calculated for NiOs3 (ref. 1); (c) found, complex 3a. 

Ni 

Fig. 2. Proposed structures for complexes 3d, 4 and 5. 

Ph \ p-Ph 

/ 
Ph 

The dark grey-violet colour (except for 2b) and 
the low solubility in aliphatic hydrocarbons are 
a common characteristic for all the derivatives. 

The i.r. spectra are very closely comparable; 
the same substitution and local symmetry is hence 
to be expected for compounds 2-5. 

The ‘H n.m.r. spectra are fully consistent with 
the proposed formulation of the complexes, either 
when considering the number of signals, and their 
integrated intensities. An examination of the X- 
ray structure of 1 [2-41 would indicate that - 
even in the presence of the hydrides - the less 
hindered position for the entering ligand is 

one of the three axial; preliminary X-ray results 
for complex 3d confirm this hypothesis. 

The formulation of complexes 2-5 as mono- 
substituted derivatives is also supported by the 
F.A.B. mass spectrum of complex 3a*, which shows 
the parent ion at 1184 m/e and the isotopic pattern 
shown in Fig. 1. 

On the basis of the above spectroscopic evidence 
we propose for complexes 3, 4 and 5 the structures 
shown in Fig. 2. 

*Obtained by Dr. Alan Hogg, Mass Spcctrometry Labora- 

tory, Dept. of Chemistry, University of Alberta, Edmon- 

ton (Canada). 
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The simple substitution of CO ligands by PhCN or 
phosphines is quite common; however, from the reac- 
tion of PPh2H, p-PPh2 or p3-PPh bridged derivatives 
could also be expected 161. To the best of our know- 
ledge these have not been obtained, probably because 
the used reaction conditions are not favourable to the 
reductive elimination of Hz; further experiments on 
this subject are in progress. 

Phosphinoacetylenes bonded only through phos- 
phorous to clusters are relatively rare, as generally 
the unsaturated C-C bond also interacts with other 
metal centres. Among the few examples, all reported 
by A. J. Carty’s group, there are Ms(CO)11(PPh2Cz- 
R) (M = Ru, OS) (71, Os,(CO),(COOEt)(OH)(PPh~- 
C2R) [8] as well as the interesting Ru~(CO)~(#Z~- 
But)(p,q2-C2But)(p-PPh2)(PPh2C2But) [9] All these 
are homometallic derivatives, whereas complexes 
4 represent the first examples for this coordination of 
the phosphinoacetylenes to heterometallic cores. 
Note that good yields of these derivatives in which 
the alkyne has not been split into II-PPh2 and 
acetylide ligands can be obtained in reaction condi- 

tions much more drastic than those adopted by 
Carty. 

DPPM acts as a monodentate ligand on mono- and 
bi-metallic derivatives [lo] ; however, clusters 
showing this structural feature have not been 
previously reported. Pt4(/.K0)2(p-DPPM)3(Ph2PCH2- 
P(O)Ph,) indeed contains a mono-dentate, but partly 
oxidized DPPM [ 111. 

Thus, complex 5 represents in our opinion the 
first example of monodentate DPPM on hetero- 
metallic clusters, the 3’P n.m.r. results, showing two 
distinct signals, only one of which is very close to 
that of free DPPM, strongly supporting the formula- 
tion of 5. 
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Structural studies on some of the above 
derivatives, as well as the characterization of the 
other products obtained in the above reactions, are 
in progress. 
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