Cyclic O,O-alkylenedithiophosphates of Phenyl-arsenic and -antimony

RAJESH K. GUPTA, A. K. RAI, R. C. MEHROTRA*

Department of Chemistry, University of Rajasthan, Jaipur, India

and VIMAL K. JAIN

Department of Chemistry, University of Guelph, Guelph, Ont., NIG 2W1, Canada

Received January 20, 1984

O,O-alkylenedithiophosphate derivatives of the general formula,

$$PhM\left[S_2P \overbrace{O}^{O} G\right]_2$$

(where M = As, Sb; $G = -CH_2 - C(Me_2) - CH_2 -$, $-C(Me_2) - C(Me_2) -$, $-C(Me_2) - CH_2 - CH(Me) -$ and -CH(Me) - CH(Me) -) were synthesized and characterized by elemental analyses and molecular weight determinations. These new complexes are soluble in common organic solvents, and their IR and NMR $({}^{1}H, {}^{31}P)$ spectral data have been used to investigate a plausible geometry. On the basis of mass spectral data the fragmentation pattern of these derivatives has also been discussed.

Introduction

Cyclic O,O-alkylenedithiophosphoric acids have not attracted much attention [1-3] as a ligand in comparison to the open chain dialkyldithiophosphoric acids [4, 5]. Our continuing interest in organoarsenic and -antimony complexes [6, 7] led us to investigate the synthesis and characteristics of phenylarsenic and -antimony bis-O,O-alkylenedithiophosphates. The structural features of these derivatives have been discussed with the help of IR, NMR (¹H, ³¹P) and mass spectral data.

Results and Discussion

Phenyl dichloro-arsine or -stibine react with O,O-alkylenedithiophosphoric acids or their ammonium salts (M'L) in 1:2 molar ratio to afford complexes of the type PhML₂ in benzene solutions (see Table 1):

Where M = As, Sb; M' = H, NH_4 ; $G = -CH_2 - C(Me_2) - CH_2 - C(Me_2) - C(Me_2) - C(Me_2) - CH_2 - CH(Me) - CH(Me$

The reactions employing the ammonium salts of the ligands are facile and can be completed at room temperature by stirring the reactants for 3-4 hours. The free acid has been used in the case of G = -CH-(Me)-CH(Me)- (ammonium salt of this acid could not be isolated) and reactions are complete after 6-8 hours of refluxing in benzene solutions. All these complexes are soluble in common organic solvents, monomeric in refluxing benzene and nonvolatile, even under reduced pressure.

IR Spectra

The IR spectra of these complexes (Table II) show the bands in the regions 950–1050 and 810–890 cm⁻¹ which have been attributed to $\nu_{(P)O-C}$ and $\nu_{P-O(C)}$ stretching modes [4, 8], while the strong bands in the region 920–990 cm⁻¹ are due to dioxaphospholane and dioxaphosphorinane ring vibrations [9, 10]. A strong band in the region 660–680 cm⁻¹ can be ascribed to $\nu_{P=S}$ stretching vibrations [11] and the bands present in the region 490–600 cm⁻¹ are due to ν_{P-S} symmetric and asymmetric vibrations [1, 12]. The ν_{M-C} [13, 14] and ν_{M-S} [15] vibrations appear in the region 455–490 and 310–370 cm⁻¹ respectively.

NMR Spectra

The characteristic resonances of the corresponding alkylene and aryl protons present in the ¹H NMR spectra of these complexes are given in Table II. A sharp singlet (δ 3.1–3.7) due to S–H protons in O,O-alkylenedithiophosphoric acids is absent in the

^{*}Author to whom correspondence should be addressed.

SI No.	Reactants					Ammonium	Physical state (m.p.) °C	Analysis (%)		Mol. Wt. Found (Calcd.)
	PhMCl ₂		0		chloride (g) Found	Found (Calca.)				
	М	(g)		M'S ₂ P'	G	G (Calcd.)		М	S	(calcul)
			М′	G (g)						
1	As	1.17	NH4	-CMe ₂ CH ₂ -CHMe	2.46	0.51 (0.56)	White solid (43–47)	13.15 (13.05)	22.15 (22.30)	586 (574)
2	As	1.13	NH4	-CMe ₂ -CMe ₂	2.33	0.50 (0.54)	White solid (158-61)	13.28 (13.05)	22.16 (22.30)	580 (574)
3	As	1.40	NH4	-CH ₂ CMe ₂ -CH ₂	2.78	0.62 (0.67)	White solid (51-55)	13.80 (13.72)	23.30 (23.45)	-
4	Sb	0.68	NH4	-CMe ₂ -CMe ₂	1.17	0.23 (0.27)	White solid (166, decomp.)	19.69 (19.61)	20.47 (20.62)	627 (621)
5	Sb	0.80	NH4	-CH ₂ CMe ₂ -CH ₂	1.30	0.30 (0.32)	White solid (133–37)	20.63 (20.54)	21.46 (21.59)	-
6	Sb	0.94	$\rm NH_4$	-CMe ₂ CH ₂ -CHMe	1.62	0.34 (0.37)	White solid (122-25)	19.73 (19.61)	20.39 (20.62)	631 (621)
7	As	1.20	н	—СНМе —СНМе	2.03	HCl ↑	Colourless pasty mass	14.74 (14.47)	25.07 (24.71)	-
8	Sb	0.78	н	—СНМе —СНМе	1.11	HCl ↑	Yellowish solid (105, decomp.)	21.96 (21.56)	22.47 (22.66)	-

	/~	~	
TABLE I. Reactions of PhMCl ₂	with $M'S_2P'$	G in 1:2 Molar Rati	ios.

n

¹H NMR spectra of the corresponding complexes, indicating the formation of an M-S bond. Aromatic protons appear in the region δ 7.20-8.40 in two sets of multiplets having the integration in 2:3 ratio; thus, the downfield set can be ascribed to orthoprotons while meta- and para-protons appear upfield.

The ³¹P NMR spectra of a few representative compounds were recorded in CDCl₃ solutions. Only a single peak was observed at δ 100.22, δ 105.85 and δ 83.03 for the complexes

respectively, while their free acids viz.,

$$HS_2P \xrightarrow{O-CMe_2}_{O-CMe_2} and HS_2P \xrightarrow{O-CH_2}_{O-CH_2}_{O-CH_2}$$

absorb at δ 93.07 and 78.55 respectively. This downfield shift of the ³¹P signals in metal complexes indicates the bidentate nature of the ligands.

The monomeric nature and the IR and NMR spectral evidences indicate a penta-coordination for the central metal atom in these complexes. Although the actual geometry can only be established by further structural studies, the corresponding $PhAs(S_2CNEt_2)_2$ complex has been found to possess a square-pyramidal geometry with a phenyl group occupying an apical position [16].

TABLE	II. IR and ¹ H NMR Spectral Da	ta of PhM $S_2P'_{3}$	⁰ ∫ ₀]₂ ^{com}	plexes						
SI	Complex	IR Frequenc	ies (cm ⁻¹)						PMR Chemical shifts (6, ppm)
No.		₽_0(P)0-C	^ν Ρ-0(C)	Ring vib.	₽=S	S-d∕	^p M-C	SMu	Alkylene	Aromatic
-	PhAs $\begin{bmatrix} 0 - CH_2 \\ CMe_2 \end{bmatrix}$ CMe2 $\begin{bmatrix} 0 - CH_2 \\ CH_2 \end{bmatrix}$ 2	1042m	825w	985m,b	670b	604m	480m	292w	1.08(s), 12H(CH ₃) 4.08(d), 8H(CH ₂)	7.28-8.00(m)
7	$PhAs \left[S_2 P \overbrace{O-CMe_2}^{O-CMe_2} \right]_2$	1010s	864s	920s,b	661s	584s	490m	343s	1.46(s), 24H(CH ₃)	7.38-8.00(m)
Э	$PhAs \left[S_2 P \begin{pmatrix} O-CHMe \\ CH_2 \end{pmatrix} \right]_2$	1000– 950s,b	890s	920m	660m	585s 500s	470m	370m	1.46–2.24(m) 22H(CH ₃ , CH ₂) 4.80(m), 2H(CH)	7.30–7.96(m)
4	$PhAs \left[S_2 P \left(O-CHMe \right) - O-CHMe \right]_2$	1035s	860m	940– 30s,b	660sb	590s 525m	455m	365w	1.68(d), 12H(CH ₃) 4.90–4.27(m), 4.H(CH)	7.40-8.20(m)
2	$PhSb \left[S_2 P \overbrace{O-CH_2}^{O-CH_2} \right]_2$	1050s	812s	990s,b	670s	605s 516w	470w	330w	1.06(s), 12H(CH ₃) 4.07(d), 8H(CH ₂)	7.208.10(m)
6	$PhSb \left[S_2 P \overbrace{O-CMe_2}^{O-CMe_2} \right]_2$	1010m	865s	920s	662s	600s, 490m,b	, 480s	310s,b	1.44(s), 22H(CH ₃)	7.20-8.16(m)
2	$PhSb \left[S_2 P \left(\begin{array}{c} O - CHMe \\ CH_2 \end{array} \right) \right]_2$	1035s	875w	955s,b	680m	600m, 520m	450s	365 w	1.28–2.37(m) 22H(CH ₃ , CH ₂) 4.70– 5.20(m) 2H(CH)	- 7.408.40(m)

O,O-alkylenedithiophosphates of As and Sb

203

Scheme I

Mass Spectra

Mass spectra of the two representative derivatives were recorded at ~ 200 °C and some important peaks are given in Table III. At lower temperatures, the intensities of peaks of higher m/e values decrease.

The spectra depict no detectable molecular ion peaks, which may indicate the pyrolytic decomposition of these derivatives. The mass spectral peaks indicate the formation of a variety of sulphides and fragments of the ligand moiety in the course of decomposition. The fragmentation of the complexes (Scheme I) appears to start with the loss of a phenyl group or one of the ligand moieties; subsequent losses are mainly due to alkenes or alkoxy groups.

Experimental

Phenyldichloroarsine [17], phenyldichlorostibine [18] and ligands [1] were prepared by the reported methods.

$$M = As, So$$

 $X = 0, 1, 2$

Arsenic and antimony were estimated iodometrically and sulphur was estimated gravimetrically as barium sulphate. Molecular weights were determined ebullioscopically using a Gallenkamp Ebulliometer equipped with a thermistor sensor. IR spectra were recorded (4000–200 cm⁻¹) as nujol mulls and ¹H and ³¹P NMR spectra were recorded in CDCl₃ solutions using TMS and 85% H₃PO₄ as internal standard. Mass spectra were recorded at ~200 °C with the ionization source operating at ~70 eV.

Reaction of Phenyldichloroarsine with the Ammonium O,O-hexylenedithiophosphate in 1:2 Molar Ratio

A benzene solution of phenyldichloroarsine (1.17 g) was added dropwise to the suspension of ammonium O,O-hexylenedithiophosphate (2.46 g) in benzene. After ~4 hours of stirring, the reaction mixture was filtered and solvent was stripped off under vacuum, giving a white solid which was

O, O-alkylenedithiophosphates of As and Sb

TABLE III. Mass	^a Spectral 1	Data of O,O	-alkylenedithio	phosphate	Complexes
-----------------	-------------------------	-------------	-----------------	-----------	-----------

PhAs S ₂ P	$\begin{bmatrix} OCMe_2 \\ \\ \\ OCMe_2 \end{bmatrix}_2$	$PhSb\left[S_2P\right]$	$\left[\begin{array}{c} OCMe_2 \\ \\ \\ OCMe_2 \end{array}\right]_2$
m/e	assignments	m/e	assignments
440	$\begin{vmatrix} Me_2 CO \\ PS_2 AsS_2 POCHMe_2 \end{vmatrix}^+$ $Me_2 CO \end{vmatrix}$	543	$\left Sb \left[S_2 P \left[\begin{array}{c} OCMe_2 \\ 0 \\ OCMe_2 \end{array} \right]_2 \right ^{\dagger} \right $
400	$\begin{vmatrix} Ph & OCH \\ PS_2 AsS_2 P & 0CH \\ OCH \end{vmatrix}^+$	486	$\begin{vmatrix} Me_2 CO \\ PS_2 SbS_2 POCHMe_2 \end{vmatrix}^*$ $Me_2 CO$
374	$ PhAs[S_2P][S_2PO_2] ^+$	446	$\left PhSb \left[S_2 P \right] \left[S_2 P \left[O - CH \right] \right]^{+} \right _{O-CH} \right]$
363	$\left PhAs \begin{bmatrix} OCMe_2 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	409	$\begin{vmatrix} OCMe_2 \\ PhSbS_2P \\ OCMe_2 \end{vmatrix}^+$
357	$ As[S_2PO_2CH_2]_2 ^+$	403	$ Sb[S_2PO_2CH_2]_2 ^*$
291	$ PhAs[S_2PO_2C] ^+$	332	$Sb \left[S_2 P \left[\begin{matrix} OCMe_2 \\ \\ \\ OCMe_2 \end{matrix} \right]^{\dagger} \right]$
286	$\begin{vmatrix} A_{s} \begin{bmatrix} S_{2}P & OCMe_{2} \\ \\ OCMe_{2} \end{bmatrix} \end{vmatrix}^{+}$	327	$ PhSb[S_2P(OH)_2] ^+$
281	$\left \operatorname{PhAs}[S_2 P(OH)_2] \right ^+$	309	$ PhSbS_2PO ^+$
263	$ PhAs[S_2PO] ^+$	294	$ PhSbS_2PH ^+$ or $ PhSbSPO_2H ^+$
248	$ PhAs[S_2PH] ^+$ or $PhAsSPO_2H^+$	262	$ PhSbS_2 ^{+}$
216	$ PhAsS_2 ^+$	249	$ Sb[S_2PO_2H] ^+$
212	$\left HS_2 P \left \begin{array}{c} OCMe_2 \\ \\ OCMe_2 \end{array} \right ^+$	230	PhSbS +
203	$ As[S_2PO_2H] ^+$	212	$ \left HS_2 P \left \begin{array}{c} OCMe_2 \\ \\ OCMe_2 \end{array} \right ^+ \right ^+ $
196	$\left \begin{array}{c} OCMe_2 \\ S_2P \\ OCMe \end{array}\right ^+$	198	PhSb *

(continued overleaf)

TABLE III. (continued)

^aMass based upon ¹H, ¹²C, ¹⁶O, ³¹P, ³²S, ⁷⁵As and ¹²¹Sb.

recrystallized from petroleum ether $(40-60 \degree C)$ and benzene mixture.

The other reactions employing ammonium salts of the ligands were carried out similarly, and details are summarized in Table I.

Reaction of Phenyldichloroarsine with the O,Obutane 2,3-dithiophosphoric Acid in 1:2 Molar Ratio

A benzene solution of phenyl dichloroarsine (1.20 g) was added to the benzene solution of O,O-butane 2,3-dithiophosphoric acid (2.03 g). The reaction mixture was refluxed for ~ 8 hours (or the evolution of HCl gas ended). The solvent was removed under reduced pressure and the resultant product was washed with petroleum ether (40–60 °C).

The results of these reactions are also summarised in Table I.

Acknowledgements

One of the authors (R.K.G.) thanks U.G.C., New Delhi for the financial assistance under Special Assistance Programme.

References

- 1 H. P. S. Chauhan, C. P. Bhasin, G. Srivastava and R. C. Mehrotra, *Phosphorus Sulphur*, 15, 99 (1983).
- 2 C. P. Bhasin, G. Srivastava and R. C. Mehrotra, Inorg. Chim. Acta, 77, L131 (1983).
- 3 R. J. Rao, G. Srivastava and R. C. Mehrotra, J. Organomet. Chem., 258, 155 (1983).
- 4 J. R. Wasson, G. M. Woltermann and H. J. Stoklosa, Topics in Current Chem., 35, 65 (1973).
- 5 I. Haiduc, Reviews in Inorganic Chemistry, 3, 353 (1981).
- 6 Rajesh K. Gupta, V. K. Jain, A. K. Rai and R. C. Mehrotra, *Indian J. Chem.*, 22A, 708 (1983).
- 7 Rajesh K. Gupta, A. K. Rai and R. C. Mehrotra, *Inorg. Chim. Acta*, 82, 145 (1984).

- 8 D. E. C. Corbridge, Topics in Phosphorus Chem., 6, 235 (1969).
- 9 J. Cason, W. N. Baxter and W. DeAcetis, J. Org. Chem., 24, 247 (1959).
- 10 R. A. Y. Jones and A. R. Katritzky, J. Chem. Soc., 4376 (1960).
- 11 L. J. Bellamy, 'Infrared Spectra of Complex Molecules', p. 311, Metheun & Co. Ltd., London (1966).
- 12 B. P. Singh, G. Srivastava and R. C. Mehrotra, Synth. React. Inorg. Metal-Org. Chem., 10, 359 (1980).
- 13 G. O. Doak, G. G. Long and L. D. Freedman, J. Organomet. Chem., 4, 82 (1965).
- 14 G. B. Deacon and R. A. Jones, Aust. J. Chem., 16, 499 (1963).
- 15 T. B. Brill and N. C. Campbell, Inorg. Chem., 12, 1884 (1973).
- (1973).
 16 R. Bally, Acta Cryst., 23, 295 (1967).
 17 E. Booth, W. E. Jones, A. F. Millidge and F. N. Woodward, J. So. Chem. Ind. (London), 68, 289 (1949).
- 18 G. O. Long and H. H. Jaffe, J. Am. Chem. Soc., 72, 3025 (1950).