## Formation of Bis( $\mu$ -methanethiolato)- $\mu_4$ -thioxotetrakis(tricarbonyliron) in the Reaction between Dodecacarbonyltriiron and Dimethyldisulphide

## CHRISTOPHER GLIDEWELL\* and ANDREW. R. HYDE

Chemistry Department, University of St. Andrews, St. Andrews, Fife KY16 9ST, U.K.

Received March 6, 1984

The synthesis of the alkane- and arene-thiolato irontricarbonyl complexes  $Fe_2(SR)_2(CO)_6$  has been very intensively investigated in recent years [1-7]. These complexes can be formed by the interaction of thiols RSH, sulphides  $R_2S$ , or disulphides  $R_2S_2$ with any of the binary carbonyls of iron, and in an extensive study of the relative reactivity of each type of starting material, the orders of reactivity were deduced as:  $Fe(CO)_5 < Fe_2(CO)_9 < Fe_3$ - $(CO)_{12}$  and  $R_2S < R_2S_2 < RSH [6]$ .

For the majority of alkyl substituents, two isomeric forms of  $Fe_2(SR)_2(CO)_6$  are identifiable on the basis of their n.m.r. spectra [1, 5, 7, 8]: these two isomers have been assigned the *anti* and *syn* structures, (I) and (II) respectively [9]:



but for sterically demanding substituents such as t-butyl or aryl, only the anti isomer can be observed [2, 5]. When R is small, however, the two isomers may be readily separated by chromatography. It has generally been supposed [1, 5, 6] that in the reactions of disulphides  $R_2S_2$  with iron carbonyls, these two isomers are the sole organometallic complexes produced, although it is known [4] that reactions involving thiols are more complex.

We have observed, using the simple expedient of employing silica rather than alumina [1] as the chromatography medium, that from the reaction of Fe<sub>3</sub>(CO)<sub>12</sub> and Me<sub>2</sub>S<sub>2</sub> in refluxing benzene not only are the *anti* and *syn* isomers of Fe<sub>2</sub>(SMe)<sub>2</sub>-(CO)<sub>6</sub> isolable in yields of around 20% and 5% respectively, but a third component is readily isolated in *ca.* 1% yield, identified by microanalysis, and by m.pt., i.r. and <sup>1</sup>H n.m.r. spectra, as the known [10] compound, [MeS{Fe(CO)<sub>3</sub>}<sub>2</sub>]<sub>2</sub>S, (**III**):



This compound has been observed as a low-yield product in a number of other reactions, including those between  $Fe_3(CO)_{12}$  and  $CH_3SCN$  [10], and  $Fe_2(CO)_9$  and cyclo-octatetraenyl methyl sulphide,  $C_8H_7SCH_3$  [11]. A similar compound, [t-BuS{Fe-(CO)\_3}\_2]\_2S is formed, along with many other products, when t-BuSH reacts over a long period with  $Fe_3(CO)_{12}$ , but less sterically hindered thiols do not appear to react in this way [4].

The formation of (III) in a wide range of reactions suggests the possibility that it may be an early product in the reactions of iron carbonyls with sulphur-containing ligands: this in turn raises the question of whether Fe<sub>2</sub>(SMe)<sub>2</sub>(CO)<sub>6</sub> and [MeS{Fe- $(CO)_3$ <sub>2</sub><sub>2</sub><sub>2</sub>S are components of a common reaction pathway. We find that neither of these compounds yields any trace of the other upon reflux during 10 h in benzene, either in the presence or in the absence of added  $Me_2S_2$ . Hence, since the normal preparative procedure for  $Fe_2(SR)_2(CO)_6$  involves a reflux time of only 5 h, we conclude that Fe<sub>2</sub>- $(SMe)_2(CO)_6$  and  $[MeS{Fe(CO)_3}_2]_2S$  are on divergent pathways from a common intermediate, which may be either the starting carbonyl  $Fe_3(CO)_{12}$  or a subsequent product. It is unlikely that (III) is formed by thermolysis of Fe<sub>2</sub>(SMe)<sub>2</sub>(CO)<sub>6</sub>, under any conditions, since thermal analysis of Fe<sub>2</sub>(SR)<sub>2</sub>-(CO)<sub>6</sub> indicates that the initial decomposition process is loss of four moles of carbon monoxide per mole of  $Fe_2(SR)_2(CO)_6$ , rapidly followed by loss of the remaining carbonyl ligands [6].

Two attractive possibilities for the identity of the common intermediate are  $Fe_2S_2(CO)_6$  and  $Fe_3S_2(CO)_9$ , both of which have been observed as early reaction products in the reaction between  $Fe_3(CO)_{12}$  and  $R_2S_2$  [7]: this represents a sulphur abstraction reaction, analogous to that between  $Fe_3(CO)_{12}$  and episulphides, which also yields  $Fe_2S_2(CO)_6$  and  $Fe_3S_2(CO)_9$  [12, 13]. It has been shown that in the reaction of elemental sulphur with  $Fe_3(CO)_{12}$  the formation of the iron-sulphur carbonyls is sequential [6]: the initially formed  $Fe_2S_2(CO)_9$ , and it is entirely plausible that a similar sequence occurs in sulphur-abstraction processes.

However we find that upon reflux in benzene, under the usual reaction conditions for this system, neither  $Fe_2S_2(CO)_6$  nor  $Fe_3S_2(CO)_9$  reacts with  $Me_2$ - $S_2$  to give any  $Fe_2(SMe)_2(CO)_6$ : aside from decompo-

<sup>\*</sup>Author to whom correspondence should be addressed.

sition products (iron, iron sulphides, and carbon monoxide), the only product identified (other than starting materials) was a small quantity of  $Fe_2S_2$ -(CO)<sub>6</sub> formed from  $Fe_3S_2(CO)_9$ . Since the initial  $Fe_3S_2(CO)_9$  was free of any impurities, this latter observation indicates that under particular conditions, the interconversion of  $Fe_2S_2(CO)_6$  and  $Fe_3S_2(CO)_9$  is at least partially reversible. Overall however the observations with  $Fe_2S_2(CO)_6$  and  $Fe_3S_2(CO)_9$  rule out both of these complexes as the common intermediate preceding  $Fe_2(SMe)_2(CO)_6$ and  $[MeS{Fe(CO)_3}_2]_2S$ .

The sole remaining type of iron-sulphur carbonyl species which may plausibly be regarded as the common intermediate is  $Fe_3(SR)_2(CO)_9$ : such a complex was isolated amongst many other products from the prolonged reaction or t-BuSH with  $Fe_3(CO)_{12}$ , where the initial product is known to be Fe<sub>3</sub>(Sbu-t)(H)-(CO)<sub>9</sub> [4]. However we have never detected the formation of such a species in any reaction of  $Me_2S_2$ , either with  $Fe_3(CO)_{12}$  or with  $Fe_3(CO)_9S_2$ . It is significant in this content that in an extensive study [4] of the reactions of alkane-thiols, RSH, with Fe<sub>3</sub>-(CO)<sub>12</sub>, compounds of type Fe<sub>3</sub>(SR)(H)(CO)<sub>9</sub> were observed only when R was i-Pr, s-Bu, or t-Bu, while  $Fe_3(SR)_2(CO)_9$  was observed only in the case of R = t-Bu. No such complexes were observed when R was an unbranched primary alkane, and it was suggested [4] that the stability of both  $Fe_3(SR)(H)$ -(CO)<sub>9</sub> and  $Fe_3(SR)_2(CO)_9$  types was strongly dependent on the steric requirements of R. Hence our non-observance of either  $Fe_3(SMe)(H)(CO)_9$  or of  $Fe_3(SMe)_2(CO)_9$  is not surprising: indeed, so far as we are aware, the existence of neither of these methyl complexes has been recorded in the literature.

## References

- 1 R. B. King, J. Am. Chem. Soc., 84, 2460 (1962).
- 2 R. B. King and M. B. Bisnette, Inorg. Chem., 4, 482 (1965).
- 3 G. Bor, J. Organomet. Chem., 11, 195 (1968).
- 4 J. A. de Beer and R. J. Haines, J. Organomet. Chem., 24, 757 (1970).
- 5 L. Maresca, F. Greggio, G. Sbrignadello and G. Bor, Inorg. Chim. Acta, 5, 667 (1971).
- 6 N. S. Nametkin, V. D. Tyurin and M. A. Kukina, J. Organomet. Chem., 149, 355 (1978).
- 7 A. R. Butler, C. Glidewell, A. R. Hyde, J. McGinnis and J. E. Seymour, *Polyhedron*, 2, 1045 (1983).
- 8 R. D. Adams, F. A. Cotton, W. R. Cullen, D. L. Hunter and L. Michichuk, *Inorg. Chem.*, 14, 1395 (1975).
- 9 L. F. Dahl and C. H. Wei, *Inorg. Chem.*, 2, 328 (1963). 10 J. M. Coleman, A. Wojcicki, P. J. Pollick and L. F. Dahl,
- Inorg. Chem., 6, 1236 (1967).
  S. C. Carleton, F. G. Kennedy and S. A. R. Knox, J. Chem. Soc. Dalton, 2230 (1981).
- 12 R. B. King, Inorg. Chem., 2, 326 (1962).
- 13 C. H. Wei and L. F. Dahl, Inorg. Chem., 4, 493 (1965).