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A consistent set of exponents for all elements of 
the periodic table, suitable for semiempirical molec- 
ular orbital and other calculations is presented. These 
exponents were calculated by fitting analytical fine- 
tions to numerical Herman-Skillman results. The new 
exponents compare well with existing exponents. 

Introduction 

One-electron radial wavefunctions for atomic 
systems can be obtained numerically by solution of 
the Hartree-Fock [l] or Hartree-Fock-Slater equa- 
tions [2]. Alternatively, analytical solutions may be 
found using Roothaan’s self-consistent field (SCF) 
method [3]. Radial functions, either numerical or 
analytic, obtained by these methods provide an ex- 
cellent starting basis for further molecular orbital 
calculations. However for approximate comparative 
calculations (SCCC or CNDO formalisms) where 
high accuracy is not required, simpler expressions 
for the radial wavefunctions are needed. 

Slater [4], long ago, recognised this need and 
proposed the use of an exponential function to de- 
scribe the radial part of each atomic orbital, 

R(r) = Nrn*-‘exp(- {r) { = (Z - s)/n*. (1) 

Values for n* and rules for calculating the screening 
constant s were given. These functions (Slater orbi- 
tals) can be calculated for all elements of the periodic 
table but give poor approximations for n* = 3 and 
upwards [5-71. Subsequent workers retained the 
form of eqn. (l), often as a linear combination, and 
used a variety of methods to obtain the optimum 
orbital exponent c. Such functions become known 
as Slater type orbitals (STOs). Both single parameter 
and double-zeta radial functions with optimised { 
values were obtained by Clementi and Raimondi for 
elements up to the first transition series [8,9]. 
Their method, using a minimal basis of STOs, mini- 
mises the energy through a modified Roothaan SCF 
atomic program. These functions are widely used in 
MO calculations [ 1 O-l 31. Burns also obtained single 
parameter functions by fitting the moments (rq) 
with accurate Hartree-Fock numerical functions [ 141. 
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A recipe was then obtained and [ values calculated. 
For the first transition series the multi-parameter 
radial wavefunctions due to Richardson et al. are 
commonly employed in routine MO calculations 
[ 15, 161. These were obtained by maximising the 
overlap with the more accurate analytic functions 
of Watson [ 171 over a wide range of configurations. 
Comparable radial wavefunctions are not available for 
the second and third row transition series. Functions 
for both these series were obtained by Basch and 
Gray by fitting multi-parameter STOs to numerical 
Hartree-Fock functions [ 181. However, these func- 
tions are resticted to the +l ions only with fixed 
configurations of 4dnp3 Ss’5p’ and 5d”-36s’6p’. 
Functions for the important neutral states are 
omitted and due to the importance of transition 
metal chemistry this restriction in published radial 
wavefunctions is a serious omission. Ground state 
electronic properties which are sensitive to the 
quality of the basis set used have been calculated 
using these various radial wavefunctions for the 3d, 
4d and 5d orbitals of the first, second and third 
transition series [19]. It was found that the Watson 
and Richardson functions were adequate for the first 
series while those of Basch and Gray were suitable for 
the remaining transition metals. 

A limiting factor in accurate ab-initio MO calcula- 
tions remains the evaluation of many-centre molec- 
ular integrals over a basis of STOs. To overcome this, 
Boys [20] originally suggested the use of Gaussian- 
type orbitals (GTOs) as an approximation to the 
radial wavefunction, 

R&r) =zNr”a-‘exp(- <r*). 

Although this introduces additional integrals as well 
as the already multidimensional integrals, the fact 
that integrals over GTOs are simpler to evaluate than 
those over STOs more than compensates for the extra 
computation. Using the integral transform from ex- 
ponentials to Gaussians allows a basis of STOs to be 
converted to one of corresponding GTOs. A frequent- 
ly used conversion is the STO-3GT0 expansion due 
to Stewart [21]. 

Notwithstanding this wide availability of radial 
wavefunctions the choice of which basis to use for a 
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{-d*/dr* + Z(Z + 1)/r* + V(r)}P,r(r) = EdPnl(r) 

where V(r) includes Slater’s X, statistical approxi- 
mation to exchange correlation [23]. The functions 
P,r(r) are normalised, thus they are related to STOs 

by 

P,r(r) = rRti(r) 

where R,(r) is given by eqn. (2). Numerical functions 
P,(r) were generated using a modified version of the 
program by Herman and Skillman [24] and outputed 
at each point over a weighted 441 presentation mesh. 
The (Y values were those of Schwarz [25] for He 
through to Nb with subsequent elements assigned a 
limiting value of 0.7. 

The curve fitting technique was that of an un- 
weighted least squares fit. Thus a minium in the ex- 
pression 
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SIl(O = G’dri)’ - (QLr(ri))* I* 

i=l 

was sought as a function of {, the orbital exponent. 
To find this minimum S, was unmerically differen- 
tiated at two points, { guess (ts) and cg + h, then 
linearly extrapolated to find d&.,/d{ = 0. The number- 
ical differentiation procedure was by the method of 
finite differences for equally spaced coordinates. 
Denoting the derivatives at {a and {a + h by AS, and 
AS,’ respectively then Newton’s interpolation for- 
mula gives 

St = hAS,/(AS, - AS,‘) 

and hence an optimum exponent of 

c opt = rg + SC 

A FORTRAN program was written to implement this 
procedure. If St was unsatisfactorily large, second 
and further cycles were repeated using {,,nt from the 
previous cycle as new input. A threshold value of 
IS{1 < 0.0001 with h = 0.05 worked well. Typically, 
convergence occurred after 3-4 iterations. 

In all cases the electronic configurations of the 
elements were those given by Cotton and Wilkinson 
[26]. For the three transition series exponents for 
both the neutral and singly ionised states were com- 
puted. The relevant configurations for the valence 
orbitals were: 

MO calculation is always a major problem. Computa- 
tional considerations may dictate both the type, 
ST0 or GTO, and size, single or multi-parameter, of 
the basis functions. Compounding this is the fact that 
these basis functions often suffer from the defect 
of limited set availability both within a molecule and 
between members of a series. If a MO calculation 
requires bases outside this range recourse to other 
authors becomes necessary. Since these separate sets 
are usually obtained by different optimisation tech- 
niques non-compatibility is immediately introduced. 
Though unavoidable, this introduces unsatisfactory 
features. The present work aims to remedy this situa- 
tion by providing a compatible basis set for all ele- 
ments of the periodic table which will be suitable for 
the more approximate SCCC and CNDO techniques. 

Routine applications of MO theory normally use 
a semiempirical approach, usually within the SCCC- 
MO or CNDO formalisms. These do not require ex- 
tensive or highly accurate basis functions. However 
a consistent set within and between members of a 
series is most desirable. Typically only single expo- 
nents for the valence orbitals are required. Due to 
the coupling of orbitals with the same I value but 
different n, the total radial wavefunction, given by 

Tn, Z = i C&R&?) 
k=I+l 

(2) 

where, 

Rk({) = (2~)k’“2((2k)!)-1’2rk-1exp(-{r) 

is a normalised STO, and the coefficients are com- 
pletely determined by the Schmidt orthogonalisation 
procedure. Since only one exponent is actually re- 
quired for a semiempirical calculation the summation 
in eqn. (2) was dropped and each radial wavefunction 
was represented by a single STO. However each radial 
wavefunction displays oscillatory behaviour and for 
a given n and I value has n - 1 - 1 radial nodes, where- 
as a single ST0 has the property of being both node- 
less and positive. Consequently fitting the radial 
wavefunction is only possible when n - Z - 1 = 0, 
i.e. for Is, 2p, 3d and 4f orbitals. This difficulty can 
be overcome, and the single ST0 representation re- 
tained, by considering instead the radial distribution 
function (RDF), r2R2n(c), which although still dis- 
playing oscillatory behaviour, is always positive. The 
occurrence of zeroes in the RDF is confined to a 
region near the nucleus. Thus the possibility of neg- 
lecting such zeroes and approximating only the outer- 
most maximum of the RDF arises. Although the 
analytic RDF cannot represent this inner behaviour 
adequately, the above possibility was considered un- 
desirable as the inner part of the radial wavefunction 
has an important role in determining the energy [22]. 

The non-relativistic Hartree-Fock-Slater radial 
wave equation is given by 

Orbital Configuration 

I d dn-zs2 

S 
dn--2s2 

P d”-*s’p’ 

II d d”-z$ 

S 
d"-zs' 

P d”-*p’ 
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where I and II denote neutral and singly ionised 
states respectively. For some elements of the transi- 
tion series alternative configurations are available, 
e.g. Cr(3d54s’). Whenever such a choice occurred 
exponents for both configurations were computed. 

Results and Discussion 

zeta fit to reproduce accurately both the inner and 
outer behaviour of the function [19]. However the 
results here produce a reasonable fit within a single 
ST0 restriction. This is of interest since a basis set 
comprising a double-zeta representation for d orbitals 
without a corresponding representation for the 
valence s and p functions has an in-built bias towards 
the former. Consequently a basis set with an equal 
quality single ST0 fit is more consistent. 

The core and valence exponents are given for the 
first twenty-one elements and for the remainder only 
the valence ones are given, (Tables I to V). Figures 1 
and 2 compare the numerical and fitted analytical 
radial distribution functions, for two typical ex- 
amples . 

Since the use envisaged for these functions is 
primarily for semiempirical work it is therefore 
important that: (a) the tail end of the radial function 
be reproduced accurately and (b) the position of the 
outermost maximum of the radial distribution func- 
tion (RDF) be represented faithfully [27]. 

From the plots (Figs. 1 and 2) condition (b) is 
seen to be satisfied. In virtually all cases the maxi- 
mum for both numerical and analytic RDFs occurs 
at a common radial distance. The exception occurs 
for f orbitals where the resulting fit is poor. This is 
not a fault in the computational procedure but rather 
is due to the inability of a single ST0 to represent 
accurately the behaviour of an f orbital. Undoubtedly 
a more flexible representation, particularly in the 
form of a double-zeta fit, would help remedy this 
situation. A surprising feature of these results con- 
cerns the single ST0 fit for d orbitals. These orbitals 
in particular are represented frequently by a double- 

The behaviour of the numerical radial functions at 
large distances from the nucleus is not produced well 
by the fitted analytic functions. This is true par- 
ticularly for valence orbitals with large values of n, 
the principal quantum number. For the core orbitals 
of the transition metals an excellent fit was obtained 
at large radial distances. The plots presented for the 
valence orbitals tend to over-emphasise this behaviour 
since the RDF rather than the radial function was 
plotted. The former decays rapidly at large r values 
(aemzSz) compared with the radial function (aevS2) 
which displays a slower decay rate at similar dis- 
tances. 

It is of interest to compare the valence s and p 
exponents calculated here for the transition metals 
with those of other authors. For the second and third 
transition series exponents for the +l metal ions are 
available. Although the procedure used in obtaining 
these exponents differs from that employed here a 
comparison of single zeta exponents is still valid. 
For both the transition series the present exponents 
are consistently smaller than those of Rasch and 
Gray. Consequently our functions decay more slowly 
at large radial distances. Since these functions also 
coincide with the outermost maximum of the 

TABLE I. Orbital Exponents He to SC. 

He 

Li 
Be 

B 
C 
N 
0 
F 
Ne 

Na 
Mg 

Al 
Si 
P 
S 
Cl 
Ar 
K 
Ca 
SC 

1s 

1.5596 

2.6613 
3.6494 

4.6362 
5.6218 
6.6063 
7.5904 
8.5748 
9.5599 

10.5485 
11.5378 

12.5293 
13.5218 
14.5152 
15.5094 
16.5038 
17.4987 
18.4942 
19.4896 
20.4861 

2s 

0.6309 
0.8789 

1.2338 
1.5533 
1.8596 
2.1632 
2.4652 
2.7645 

3.1238 
3.4881 

3.8532 
4.2171 
4.5799 
4.9430 
5.3077 
5.6752 
6.0466 
6.4226 
6.8035 

2P 

1.0696 
1.4500 
1.8166 
2.1739 
2.5173 
2.8485 

3.3802 
3.8855 

4.3909 
4.8957 
5.3965 
5.8919 
6.3821 
6.8682 
7.3528 
7.8380 
8.3270 

3s 

0.8404 
1.0393 

1.3448 
1.5893 
1.8086 
2.0199 
2.2269 
2.4295 
2.6644 
2.8992 
3.1046 

3P 

0.9273 
1.2064 
1.4535 
1.6886 
1.9160 
2.1347 
2.4431 
2.7188 

2.9417 

3d 

2.3105 

4s 

0.8648 
1.0282 
1.1186 
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TABLE II. (n - 1)d ns np Exponents for Transition Seriesa. TABLE III. Valence Exponents Ga to Sr; In to Ba; Tl to AC. 

Neutral + 1 Ions 

3d 4s 4p 3d 4s 4p 

SC 2.3105 1.1186 0.8401 2.3219 1.2578 1.0401 
Ti 2.6165 1.1896 0.8627 2.6230 1.3112 1.0878 

V 2.8760 1.2545 0.8957 2.8836 1.3763 1.1338 
Cr 3.1190 1.3153 0.9239 3.1272 1.4385 1.1768 
Mn 3.3588 1.3738 0.9493 3.3673 1.4986 1.2178 

Fe 3.5997 1.4296 0.9717 3.6084 1.5563 1.2567 
Co 3.8446 1.4831 0.9920 3.8572 1.6121 1.2939 
Ni 4.0930 1.5347 1.0103 4.1013 1.6661 1.3294 
Cu 4.1332 1.4443 1.0266 4.3495 1.7182 1.3632 

Zn 4.5897 1.6330 1.0423 4.5970 1.7696 1.3963 

4d 5s 5p 4d 5s 5p 

Y 1.9363 1.2897 0.9269 1.9633 1.3946 1.1513 
Zr 2.2055 1.3657 0.9869 2.2217 1.4683 1.2108 
Nb 2.4226 1.4277 1.0347 2.4364 1.5336 1.2633 
MO 2.6204 1.4803 1.0724 2.6325 1.5921 1.3095 
Tc 2.8137 1.5293 1.1058 2.8246 1.6472 1.3521 
Ru 3.0037 1.5746 1.1345 3.0134 1.6991 1.3911 
Rh 3.1907 1.6172 1.1596 3.1993 1.7486 1.4271 
Pd 3.3739 1.6578 1.1816 3.3814 1.7962 1.4606 
Ag 3.5522 1.6968 1.2011 3.5588 1.8421 1.4919 
Cd 3.7253 1.7343 1.2186 3.7311 1.8869 1.5214 

Sd 6s 6p 5d 6s 6p 

Lu 2.3106 1.5900 1.0927 2.3789 1.7056 1.3850 
Hf 2.6669 1.6725 1.1408 2.6920 1.7776 1.4413 
Ta 2.8851 1.7384 1.1812 2.9031 1.8425 1.4943 
W 3.0642 1.7950 1.2172 3.0791 1.9012 1.5431 
Re 3.2252 1.8453 1.2498 3.2382 1.9551 1.5881 
OS 3.3758 1.8910 1.2798 3.3873 2.0050 1.6300 
Ir 3.5197 1.9329 1.3075 3.5301 2.0515 1.6679 
Pt 3.6588 1.9719 1.3332 3.6682 2.0954 1.7035 
Au 3.7944 2.0082 1.3569 3.8030 2.1369 1.7367 
Hg 3.9276 2.0424 1.3788 3.9355 2.1764 1.7677 

(n - 1)d ns Exponents for Transition Seriesb 
Neutral atoms 

d S 

Cr 2.8960 1.2175 
Cu 4.3416 1.5841 
Nb 2.2943 1.3509 
MO 2.4975 1.3914 
Tc 2.6950 1.4287 
Ru 2.8898 1.4629 
Rh 3.0834 1.4946 
Pd 3.2740 1.5244 
Ag 3.4598 1.5525 
Pt 3.5753 1.8374 
Au 3.7133 1.8655 

4s 4P 5s 

Ga 1.9148 1.1942 

Ge 2.1227 1.5352 

As 2.2999 1.7902 

Se 2.4637 1.9915 

Br 2.6196 2.1708 

Kr 2.7702 2.3390 

Rb 2.9484 2.6004 0.9944 

Sr 3.1267 2.8219 1.1727 

5s 5P 6s 

In 2.0234 1.3670 

Sn 2.2244 1.6197 

Sb 2.3861 1.8467 

Te 2.5329 2.0496 

I 2.6723 2.2273 

Xe 2.8070 2.3858 

cs 2.9674 2.6133 1.0360 

Ba 3.1279 2.8043 1.2061 

6s 6~ 6d 7s 

n 2.3034 1.5966 
Pb 2.4953 1.8863 
Bi 2.6531 2.0923 

PO 2.7949 2.2649 

At 2.9266 1.4210 2.4210 

Rn 3.0512 2.5678 

Fr 3.1983 2.8033 1.1579 

Ra 3.3417 2.9881 1.3178 

AC 3.4716 3.1335 2.1662 1.4184 

TABLE IV. Valence Exponents for the Lanthanide?. 

Configuration 4f 5d 6s 

Ce 4f26s2 1.0881 1.2559 

Pr 4f36s2 1.1928 1.2757 

Nd 4f46s2 1.2915 1.2944 

Pm 4f56s2 1.3692 1.3121 

Sm 4f66s2 1.4318 1.3292 

EU 4f76s2 1.4851 1.3458 

Gd 4f75d16s2 1.5954 2.2477 1.4606 

Tb 4P6s2 1.5754 1.3778 

DY 4fr06s2 1.6155 1.3933 

Ho 4f”6s2 1.6533 1.4085 

Er 4f1*6s2 1.6894 1.4235 

Tm 4ft36s2 1.7243 1.4384 

Yb 4fi46s2 1.7581 1.4530 

Lu 4f145d16s2 1.8366 2.3 106 1.5900 

aGround state dn-* s2. bGround state d”-’ si. aNeutral atoms. 
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TABLE V. Valence Exponents for the Actinidesa. 

Configuration 5f 6d IS 

Th 5@6d27s2 

Pa 5f26d’7s2 

U 5f36d17s2 

NP 5f57s* 

PU 5f67s* 

Am 5f77s2 
Cm 5f76d’7s2 
Bk 5fs6d17s2 
Cf 5f’O7s2 
Es 5f”7s2 
Fm 5f’27$ 
Md 5f’37s2 
No 5f147s2 
LI 5f146d17s2 

*Neutral atoms. 

1.2706 

1.3161 

1.3166 

1.3608 

1.4064 
1.5146 
1.5791 
1.5715 
1.6462 
1.7339 
1.8246 
1.9063 
2.0335 

2.3516 

2.2679 

2.3083 

2.4309 
2.4543 

2.5488 

1.4994 

1.4601 

1.4782 

1.4162 

1.4295 

1.4421 
1.5426 
1.5577 
1.4771 
1.4880 
1.4985 
1.5088 
1.5189 
1.6439 

b.00 0.76 153 2.29 3.05 3.61 4.56 5.34 

RADIAL DISTANCE I AUS 

Fig. 1. Distribution function for C 2s orbital. 

numerical RDFs it would appear that for a single 
ST0 fit they are of superior quality to those of 
Basch and Gray. 

For the first transition series comparison of the 
valence s functions with those of Richardson and 
coworkers shows little difference, despite the differ- 
ent methods of computation. These exponents suffer 
from the restriction of being tabulated for the neutral 
metal atoms only. It is assumed that the same s ex- 
ponent may be used for higher states of ionisation. 
An examination of Table II shows that this assump- 
tion may be unsatisfactory since the s exponents for 
the neutral and +l states differ. Indeed for very 
high states of ionization the use of a neutral s expo- 
nent may introduce considerable error. The compari- 
son of p functions for the neutral state is more dif- 
ficult since no dn-*slpl configuration is listed by 
Richardson and coworkers [15,16]. However a 

0.56 

0.46 

$ 
F 04c 

Y 

? 
g 0 32 

$ 024 

z 
0 

0.16 

O-08 

0.00 
, 

MO 5s 

(A) Fitted 

(9) Numerical 

00 1.47 295 4.42 5.90 7.37 685 10.32 

RADIAL DISTANCE I AUS 

Fig. 2. Distribution function for a MO 5s orbital. 

comparison of their results for the configuration 
d”-‘p’ with the present ones for the dn-*slpl 
configuration shows that the latter are slightly larger. 
For the +l ions the d”-*p’ configuration was con- 
sidered by Richardson and coworkers and these are 
similar to the ones calculated in the present study. 

These new exponents are particularly useful for 
semiempirical molecular orbital calculations, as to 
date no complete set is readily available. To compare 
their use with existing exponents comparative self- 
consistent charge and configuration calculations 
(extended Htickel) are reported for M(C0)6, M = Cr, 
MO, W. In one set of calculations the radial functions 
of Richardson and coworkers [15, 161 for Cr, those 
of Basch and Gray for MO and W [ 181 and those of 
Clementi and Raimondi [8] for C and 0 were con- 
sidered. In the second set of calculations the new 
exponents were used. 

The results are shown in Table VI, from which it 
is noted that there is little variation between the sets 
of exponents. In both cases the absolute charges 
increase as the atomic number increases, while the 
new exponents give slightly larger absolute charges. 
Both series of calculations give the HOMO as 2tZg, 
as expected. 

The ionization potentials (Koopmans’ theorem) 
of all the hexacarbonyls are similar in agreement with 
experiment. Thus it is seen that the new set of ex- 
ponents is suitable for semiempirical molecular 
orbital calculations. 
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