Nickel-Nitrosyl Complexes: Structure of Nitrosyltris(trimethylphosphine)nickel $Hexafluorophosphate, \{Ni(NO)(PMe₃)₃\}PF₆$

G. ELBAZE, F. DAHAN, M. DARTIGUENAVE* and Y. DARTIGUENAVE

Lnboratoire de chimie de Coordination du CNRS, 205 route de Narbonne. 31400 Toulouse, France

Received October 27, 1983

The crystal and molecular structure of nitrosyltris- (trimethylphosphine)nickel(O) hexajluorophosphate, (Ni(NO)(PMe,)3)PF,, has been determined from three dimensional single crystal X-ray analysis. The compound crystallizes in the orthorhombic space group Pnma with Z = 4 and a unit cell of dimensions: $a = 16.253(3)$, $b = 10.536(1)$ and $c = 12.228(2)$ Å *The structure was solved by conventional heavy atom techniques and refined by least-squares methods to* $R_1 = 0.036$ and $R_2 = 0.048$ respectively for 1085. *independent reflections. The coordination geometry around the nickel is a slightly distorted tetrahedron with an average P-Ni-P angle of 105.63" and P-Ni-N angle 113.03'. The nickel nitrosyl group is slightly bent with an Ni-N-O angle of 175.4(5)^o. The bending occurs in the Cl -PI -Ni-N-O plane toward PI. The structure is compared with other tetrahedral {M-NO} lo phosphine complexes and the M-NO bonding is discussed.*

Introduction

It is now well established that the geometry of the triatomic ${M-NO}^x$ fragment in metal nitrosyl complexes is dependent on the nature of the metals, on the other coordinated ligands and also on the geometry of the coordination sphere [l]. In tetracoordinate ${Ni-NO}^{10}$ complexes, two limiting stereochemistries consistent with the amphoteric nature of NO have been proposed: square planar with a strongly bent $Ni-NO$ group $(120^{\circ}, NO^{-})$, and tetrahedral with a linear Ni-NO group $(180^\circ, \text{NO}^+)$. However, only tetrahedral and distorted tetrahedral geometries have been observed experimentally, with Ni-NO angles in the range $150-180^{\circ}$: $152.7(7)$ in $N = N \cdot N$ angles in the range 150–160. 152.7(7) in $(100)(13)(1113)2$ [2] and $101.5(3)$ in Ni(NO)⁻ $(NCS)(PPh₃)₂$ [3], and 165.5(8)[°] in Ni(NO)(NO₂)-
(PMe₃), [4] where the PMe₃ ligand is less sterically $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ where the 1 meg ligand-listes steries in μ geometry, vibronic distortion, production geometry, vibronic distortion, packing interaction
and electronic properties have all been suggested as

the origin of this distortion. Although the other variables are difficult to control, it was thought that increasing the symmetry of the molecule by using three identical ligands would increase the linearity of the M-N-O moiety. For example, values close to 180° have been reported for ${M(NO)P_3}^{n+}$ compo have been reported for $\frac{1}{2}$ (N(NO)(p(OCH), CCH,) $\frac{1}{2}$ $\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ for $\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ for $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ \mathcal{C} [, 100 101 [M(NO)(111)]. (111 CH3C- $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{3}$ and $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{3$ there are still exceptions, which have been tentatively related to the electronic structure of the complex $[1]$: $\{ Ni(NO)(NP_3)\}^+$ with Ni-N-O = 167.7(21)^o $(NP_3$ = tris(2-diphenylarsinoethyl)amine) and Rh-(N₃) lifty-dipricity interesting the Richard Constant Constants in the Richard Constant Constants in the Richard Constants in the Richard Constant Constants in the Richard Constants in the Richard Constant Constants in t $\frac{100}{26}$

 $(26)^{\circ}$.
It was thus of interest to investigate further the influence of ligand and symmetry on the M-N-O moiety, by carrying out structural studies of related complexes. We report here the crystal structure of $N_E(N_O)(N_A)$) $p_E = ad$ its comparison with $N(N)$ (NO)(N N)(PMe₃), $N(N-1)$, $N(N-1)$, $N(N-1)$, $N(N-1)$ $t_1(t_0)$ $t_2(t_1)$ t_3 t_2 . This complex is casily dotained by oxygen atom transfer, on reacting CO with
an acetone solution of $\{Ni(NO_2)(PMe_3)_3\}PF_6$ prepared *in situ* from $\text{NiCl}_2(\text{PMe}_3)_2$, NaNO_2 , NaPF_6 and PMe₃. The solution electronic spectrum of this complex and of related $\{Ni(NO)(PEt₃)₃\}PF₆$ and ${Ni(NO)(PMe₂Ph)₃}PF₆$ have been measured and compared to $Ni(NO)(NO₂)(PR₃)₂$ (PR₃ = PMe₃, PEt₃, PMe₂Ph).

Experimental

Procedure, Reagents and Solvents

All operations were carried out under a purified argon atmosphere in a conventional vacuum system or in a Jaram Glove Box.

Acetone, dichloromethane and dimethylether (Fluka *puriss.)* were distilled just before use over the fund puriss, were distinct just before use over the U Cl, N_a, Co₃; N_a: dimethylether intervention of A , C_1 CH_2Cl_2 : Na_2CO_3 ; Na:dimethylether), transferred under argon and degassed on a vacuum line. Carbon monoxide was used without purification. Trimethylphosphine was prepared following [lo] and stored under argon.

^{*}Author to whom correspondence should be addressed.

TABLE I. Crystal Data and Experimental Details of the X-ray Diffraction Study of $[Ni(NO)(PMe₃)₃]PF₆$.

(B) Measurement of Intensity Data

(C) Treatment of Intensity Data^c

^a From a least-squares fitting of the setting angles of 25 reflections. b Showed only random, statistical fluctuations. ^cAll computer performance performed on an Iris 80 CII computer with use of α is a second or α or α and α is α $\frac{d}{dx}$ - $\frac{d}{dx}$ - $\frac{d}{dx}$ - $\frac{d}{dx}$ is $\frac{d}{dx}$. $\frac{d}{dx}$ is $\frac{d}{dx}$ is $\frac{d}{dx}$ is $\frac{d}{dx}$ is $\frac{d}{dx}$. $\frac{d}{dx}$ is $\frac{d}{dx$ ${}^dR = \Sigma ||F_o|| - |F_c||/\Sigma |F_o|$. ${}^1R_w = [\Sigma w (|F_o| - |F_c|)^2 / \Sigma w F_o^2]^{1/2}$.
observation of unit weight.

Synthesis of the Complexes Physical Measurements

 (m_{SIS}) in complexes $(p_{\text{D}}-m_{\text{SIS}})$ $\frac{1}{2}$ PE_{tr} (3) PM_e, Ph (3)) were prepared as $\frac{1}{2}$ and $\frac{1}{2}$ were presented as $\frac{1}{2}$ PEt₃ (2), PMe₂Ph (3)) were prepared according to the published method [11].

$\{Ni(NO)/PMe₃/₃\}PF₆$

 T_{ref} and T_{ref} and T_{ref} and T_{ref} are T_{ref} . 10 a religion of $m_{21}m_{3/2}$ (7.3 g) in 40 ml of access and $m_{3/2}$ (7.3 g) mmol; 1.27 g) in 40 ml of acetone was added 0.3 g (4.5 mmol) of NaNO₂, 1 g (6 mmol) of NaPF₆ and 6 mmol (0.5 ml) of PMe₃. CO was allowed to bubble through this solution for 3 hours. Filtration and concentration of the solution gave a dark violet product, which was recrystallized from dichloromethane diethylether (l/l) as violet parallelepipeds (Yield: diethylether (1/1) as violet parallelepipeds (Yield: 65%). Anal. (1) Calc. for NiNOP₄C₉H₂₇F₆: C% 23.40; $\frac{15}{100}$ 5.05; NM, (1) Car, 101 MHOI 4C 911271 6. C/0 23.40, $(1/6, 3.05, 13/6, 3.05, 190$ and $(1/6, 2.57, 11/6, 36.76, 11/6)$
 $(2.01, 4.0)$ C-1, f_{10} , NIMOP₄C₁H₃ F₆: C% 36.76; H% 3.01. (2) Calc. for NiNOP₄C₁₈H₄₅F₆: C% 36.76; H% 7.66; N% 2.38. Found C% 36.12; H% 7.41; N% 2.60. (3) Calc. for Ninop, C₂₄H₃ H₃^F, N₂^{*C*}, C₃¹, C₃², C₃¹, C₃², C₃¹, C₃², C₃¹, C₃², \mathcal{O}_f Car, for Nivol₄ C₂₄11331 6, C/0 77,71, 11/0 5.10,
N% 2.16. Found C% 44.56; H% 5.11; N% 2.50.

Infrared spectra (KBr or nujol mull) were recorded with a Perkin Elmer 137 Spectrophotometer. UV spectra were measured with a Cary 14 spectrophotometer equipped with a low temperature Oxford cryostat (1.00 or 2.00 mm cells) on $10^{-2} - 10^{-3}$ *M* solutions in acetone and dichloromethane. Solution ^{31}P {¹H} NMR spectra were measured in acetone/ acetone- d_6 at 36.43 MHz with a Bruker WHX-90 spectrometer in the Fourier Transform mode, with 2 H as internal lock and complete ¹H decoupling. Chemical shifts were referenced to P(OMe)₃ $\delta = 141$ ppm downfield from H_3PO_4 (85%).

Collection and Reduction of X-ray Data

A suitable purple parallelepiped-shaped single crystal was obtained by recrystallization in dichloromethane and diethylether $(1/1)$, stable enough to be handled in air, and then sealed in a Lindemann glass capillary filled with nitrogen.

Preliminary Weissenberg photographs indicated that the crystal was orthorhombic, space group Pmna or Pn2₁a. The space group was assumed to be Pnma, confirmed by subsequent successful solution and refinement of the structure. The crystal was mounted on a Nonius CAD4 diffractometer. The details of the data collection and reduction are given in Table I. Because of the small intensity changes of standards and the dimensions of the crystal, corrections for decomposition and absorption were not required.

Structure Solution and Refinement

The structure was determined by the heavy-atom method. A Patterson map revealed the position of the nickel atom. Subsequent Fourier maps revealed the positions of all non-hydrogen atoms, which were refined anisotropically. The hydrogen atoms were located from a difference electron density map. Their geometry was idealized (C-H = 0.97 Å, H-C-H = 109.5 $^{\circ}$); they were introduced in the last cycles of refinement with an isotropic temperature factor equivalent to that of their bonding atom.

Neutral atom scattering factors for non-hydrogen atoms and corrections for anomalous dispersion effects for nickel, phosphorus and fluorine atoms were obtained from the tabulation of Cromer and Waber [12]. Scattering factors for the hydrogen atoms were those of Stewart *et al. [* 131.

The final full-matrix least-squares refinement converged to $R_1 = 0.036$ and $R_2 = 0.048$. The weighting scheme used in the minimization of the f_{inertion} $\sum_{w}(|E| + |E|)/2$ is defined as w = $1/|E|/2$ $(nE/2)$ where p is the factor to prevent over + $(pF_0)^2$ } where p is the factor to prevent over-
weighting of strong reflections. An analysis of variance according to F_o and Sin θ/λ showed satisfactory consistency. A final difference Fourier map showed no excursions of electron density greater than $0.35 \text{ e}/\text{\AA}^3$.

Non-hydrogen atomic positional and thermal parameters, along with their standard deviations as derived from the inverse matrix of the final cycle of least-squares refinement, are reported in Table II.

TABLE II. Final Least-Squares Coordinates with Estimated Standard Deviations for $[Ni(NO)(PMe₃)₃]PF₆.$

Anisotropic thermal parameters and hydrogen atomic coordinates are listed in Tables IIB and IIC, respectively, of the Supplementary Material.

Results and Discussion

The physical properties of the three complexes are reported in Table III. They are tetracoordinate, cationic and diamagnetic. They are fairly stable in the solid state, and in solution if kept under argon or (better) in a reducing CO atmosphere. In the solid state and in solution they exhibit only one infrared band $\nu(NO)$ at 1745 cm⁻¹ (PEt₃), 1750 cm⁻¹ (PMe₃) and 1775 cm^{-1} (PMe₂Ph). Table III indicates that $\nu(NO)$ increases from the triethylphosphine complex to the triphenylphosphine complex and follows the decrease of the basicity of the phosphine ligand. The $31P$ $\{^1H\}$ NMR spectra show that the phosphine ligands of ${Ni(NO)P_3}^+$ are equivalent on the NMR time scale. No evidence of phosphine dissociation was

TABLE III. Physical Data for the $\{Ni(NO)(PR_3)_3\}PF_6$ Complexes.

 $a\bar{p}(NO)$ in cm⁻¹. bMagnetic susceptibility value corrected from the diamagnetism of the ligands—the higher value of the tri- ν (NO) in can assume the complex due to its greater and the complex due to its greater and ν and ν and ν and ν are ν its greater and ν its greater and ν is ν its greater and ν its greater and ductivity of lop3 *M* α . For a current component of the comparison G(10p3 *M* α Mus)acl in CH, α and α and α $\frac{1}{2}$ in property of the method in property of P_1 . The free light of P_2 free light of P_3 . Executions (See also free light).

apparent, as was reported for $\{Ni(NO)(PPh_3)_3\}PF_6$. Lowering the temperature to 183 K did not affect the spectra. A good correlation was obtained between the variation of the phosphine chemical shift $(\Delta \delta$ = δP (complex) – δP (free ligand)) and Tolman's cone angle of the phosphine, indicating similar solution structures for the three complexes.

TABLE IV. Selected interatomic distances (A) and angles $(°)$ for $[Ni(NO)(PMe_3)_3]PF_6$.^a

$Ni-P1$	2.229(2)	$P1-Ni-P2$	104.92(5)
$Ni-P2$	2.239(1)	$P1 - Ni - N$	109.98(16)
$Ni-N$	1.645(5)	$P2-Ni-N$	114.55(16)
$N-O$	1.139(9)	$P2 - Ni - P2*$	107.06(5)
		$Ni-N-O$	175.4(5)
$P1 - C1$	1.811(8)	$P1 - C2$	1.803(6)
$Ni-P1-C1$	120.5(2)	$C1-P1-C2$	102.4(3)
$Ni-P1-C2$	113.2(2)	$C2 - P1 - C2^*$	103.0(3)
$P2 - C3$	1.806(6)	$P2 - C4$	1.814(7)
		$P2 - C5$	1.799(6)
$Ni-P2-C3$	112.3(2)	$C3-P2-C4$	102.5(3)
$Ni-P2-C4$	115.9(2)	$C3-P2-C5$	101.1(3)
$Ni-P2-C5$	119.8(2)	$C4 - P2 - C5$	102.9(3)
P3-F1	1.580(5)	$P3 - F3$	1.582(5)
$P3 - F2$	1.566(5)	$P3 - F4$	1.574(6)
		$P3-F5$	1.564(4)
$F1 - P3 - F2$	179.3(2)	$F2-P3-F4$	90.4(2)
$F1 - P3 - F3$	90.1(2)	$F2-P3-F5$	90.2(2)
$F1 - P3 - F4$	90.3(2)	$F3 - P3 - F4$	179.7(2)
$F1 - P3 - F5$	89.8(2)	$F3-P3-F5$	89.0(2)
$F2-P3-F3$	89.2(2)	$F4 - P3 - F5$	91.0(2)
		$F5 - P3 - F5*$	177.9(2)
		Ω	

Non-bonded Intramolecular contacts (A)

a Asterisks represent the equivalent position x, $1/2 - y$, z.

Description of the X-Ray Structure of {Ni(NO)- $(PMe₃/₃)$ $PF₆$

Selected interatomic distances and angles are r_{c} reported interacting unstances and angles are $_{N}^{1}(N_{0})(p_{0})$ 3) $_{N}^{1}(p_{0})(p_{1})$ 3) $_{N}^{1}(p_{1})$ $\{Ni(NO)(PMe₃)₃\}$ ⁺ cation, along with the atom labelling scheme, is shown in Fig. 1. The crystal structure consists of discrete, well-separated $\{Ni(NO)$ - $(PMe₃)₃$ ⁺ cations and $PF₆⁻$ anions. The coordination geometry around the nickel atom is pseudo-tetracometry around the meker atom is pseudo-terrastart with the atoms C_1 , T_1 , T_2 , T_3 , T_4 symmetry T_5 ymmetry plane of the molecule, there is no C_3 sym-IGUY AAIS AS WAS ODSCIVED IN INITIALLY THEIRS AND $\frac{1}{10}$ and no disorder is apparent for the Ir(NO)(PPh_3)₃, and no disorder is apparent for the NO group. The cation however is more symmetrical to group. The early however is more symmetrical
 $\frac{N!}{N!}$ $\lim_{x \to \infty} \frac{\ln(1 + \theta)}{1 - \theta}$ where no element of symmetry is present. It is the first complex where the dihedral angle between the two $P1-Ni-N-O$ and $P2-Ni-P2*$ planes is exactly 90 $^{\circ}$.

Fig. 1. ORTEP drawing of $\{Ni(NO)(PMe_3)_{3}\}^+$.

The deviations of the angles about the nickel atom from the ideal tetrahedral value are small. The average P-Ni-P angle is 105.63° and the average P-Ni-N is 113.03°. These values are not different from the average values reported for the other d^{10} complexes, especially those of $N(\Delta I\Omega)(D(\Omega\Omega))$, CCH, λ , λ +, and specially those of $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ confirm that the phosphorus ligands are slightly crowded away from NO and are as predicted by theoretical calculations [17].

Comparison of main bond distances and angles $\frac{1}{2}$ comparison of main bond distances and algebra reproduced in Table V. The two $N! - P_1$ bond lengths of the two $N! - P_1$ bond in the two C $220(1)$ and $2.29(2)$ a differ slightly but are in the r_{252} (1) and $2.222(2)$ A differentially out are in the the σ are longer than σ are σ than the Ni-phosphite distances in the σ are in the differences in state of the differences in steric and the distances in steric and elec t_{t} and t_{t} are properties of phospheric compared to phospheric compare properties.

Spirituality.
The N_i-N distance of 1.646660, 8, is in the range of range of range of the range of range of range of range of r The N-N distance of 1,040(0) A is in the range of the observed values for the nickel complexes (av. $Ni-N: 1.69$ Å). Three shorter distances are apparent $n = N$. 1.09 A). Three shorter distances are apparent C_{H} 1.59(1) A in [Ni(NO)(T(OCH2)3⁻ $CCH₃$)₃, $\}$ ⁺, 1.58(1) Å in $\{Ni(NO)(TEP)\}$ ⁺, and 1.59(2) A in $\{Ni(NO)(NP_3)\}^+$. Correspondingly, a lengthening of the N-O distance would be expected, which is not apparent in the Ni-phosphine complexes. Moreover, pparent in the Ni-phosphile complexes, moreover, $p_{\text{sphild. The same trend in the same of $p_{\text{max}}$$ phosphite compound. The same trend is observed in the infrared NO stretching frequencies, which lie in a small range between $1700-1750$ cm⁻¹ for phosphine species but are higher $(1820-1900 \text{ cm}^{-1})$ for the proces but are inglied (1620–1700 cm) for the mosphite complexes prop. This trend reduces the greater ability of phosphites, with reduced σ basicity and increased π acidity, of allowing greater electron drift from π^* NO on to the metal.

The nitrosyl group is coordinated in a nearly $\frac{1}{100}$ including the subset of 175.4(5)⁰ incar rasmon with an $19 - 19$ angle of $179 - 79$, very similar to the $176.8(18)°$ value reported for the phosphite complex. The most interesting point of this

structure is the fact that the bending occurs in the ructure is the fact that the bending occurs in the $C1-P1-Ni-N-O$ plane toward P1. This trend was already apparent in $Ni(NO)(NO₂)(PMe₃)₂$ since the ngle between the two planes $O-NZ-N1$ and $2-N1-N1$ was 11.5 at 293 K but only 4.8 at 135 K. Consequently, the intramolecular $O-P1$ distance 4.069(7) Å is smaller than the two $O-P2$ distances, 4.254(6) Å (Fig. 2). The other calculated non-bonding intramolecular contacts between the donor atoms coordinated to Ni are reported in Table IV, and show the same trend. As has been observed for other monodentate phosphine complexes, the shortest $N-P$ contact is to the P1 atom, which is the nearest to the metal center.

O

Fig. 2. A drawing of the inner coordination sphere of g. $2.$ A drawing of the inner coordination sphere of

It is thus probable that this distortion of the It is thus probable that this distortion of the $Ni-N-O$ group is more electronic than steric in its origin. It has been pointed out that decreasing the symmetry of the Ni(NO) L_3 entity from C_{3v} lifts the degeneracy of the two π^* nitrosyl orbitals [1]. They may not interact equally with the metal d orbitals and be responsible for the bending of $Ni-N-O$. As shown in Fig. 3, the symmetry plane XOZ (N-Ni-P1) plays a special role since the empty $\pi_x^*(NO)$ (the filled d_{xz} orbital which is antibonding towards $PMe₃$) and an empty phosphorus d orbital are oriented in this plane. Thus in C_{2v} symmetry, the $\pi_x^*(NO)$ orbital is well located to share the d_{xz} electrons which removes the degeneracy of the two $\pi^*(NO)$ orbitals, π_x^* , π_y^* . Thus, this $\pi^*(NO)$ degeneracy splitting distorts the molecule and bends the $Ni-N-O$ moiety in the direction where the π^* NO electron density is greater (toward $P1$). It is then tempting to conclude that there might be a relation between the electronic property of the ligand in the P1 position (P1 in $Ni(NO)(PMe₃)₃⁺, NO₂ in Ni(NO)(NO₂)(PMe₃)₂.)$ and the bending of the $M-N-O$ group, the ligand giving the best energy fit between $\pi^*(NO)$ and the d_{xz} orbital giving the strongest distortion.

The trimethylphosphine ligands have the normal geometry. The values of the distances and angles are reported in Table IV. The PF_6^- ion shows an average

P-F bond length of 1.572 A. The F-P-F angles are $-$ r bond length of 1.5/2 A. The F--P-F angles are normal (Table IV). The CH₃-F shortest contact is $3.423(7)$ Å, which is in good agreement with the sum of the van der Waals radii of CH_3 and F (2.00 and 1.35 Å respectively) [18].

Electronic Spectra $\mathit{tronic} \, \mathit{spectra}$

The electronic spectra of $\{Nl(NO)(PMe_3)_3\}PP_6$ (1) and $Ni(NO)(NO₂)(PMe₃)₂$ (4) were obtained between 190 and 293 K in acetone and dichloromethane saturated with CO. They are shown in Fig. 4 and the corresponding data are reported in Table VI. No solvent dependence was observed and only the expected shift to higher energy was observed with decreasing temperature. A similar spectrum has been previously observed for $\{Ni(NO)P_3\}^+$ species and was tentatively attributed to configuration interaction [5, 8]. The spectra of the two complexes (1) and (4) are surprisingly very similar, despite the difference in symmetry $(C_{3v}$ and C_s). Since the bands result from electronic transitions originating from the ${}^{1}A_{1} \rightarrow {}^{1}E$
and ${}^{1}A_{1} \rightarrow {}^{1}A_{1}$, ${}^{1}A_{2}$, ${}^{1}E$ transitions (in C_{3v} symmetry)

ig. 4. 293 K electronic spectra $\left(---\right)$ and Ni(NO)(NO₂)(PMe₃)₂ $\left(-\right)$ in acetone saturated with CO. $1(NO)(PMe_3)$ ₃ PFe_6

 $\mathcal{F}_{\mathcal{F}}$, and the analogy of the a f_1 g. 5), a possible explanation of the analogy of the two spectra is that substitution of $PMe₃$ by $NO₂$ has the consequence of decreasing the symmetry of the molecule and of splitting the first ${}^{1}A_{1} \rightarrow {}^{1}E$ transition

TABLE VI. Solution Electronic Spectra of the P and P and P and P and P able plexes.

Compounds	$\bar{\nu} \times 10^{-3}$ cm ⁻¹ (e) Acetone (293 K)		
$\{Ni(NO)(PMe_3)_3\}PF_6$	18400 (500)	22200 (840)	28000 (390)
$\{Ni(NO)(PEt3)3\}PF6$	16900 (190)	20350 (350)	27800 (440)
$\{Ni(NO)(PMe_2Ph)_3\}PF_6$	17970 (300)	21250 (445)	
$Ni(NO)(NO2)(PMe3)2$	17500 (860)	22500 (830)	27900 (810)
$Ni(NO)(NO2)(PEt3)2$	17100 (970)	21800 (1030)	27900 (860)
$Ni(NO)(NO2)(PMe2Ph)2$	17400 (1020)	22200 (940)	28400 (900)

(17900 cm-' in (I)) into two transitions in (4): one 17900 cm \cdot in (1)) into two transitions in (4); one at 17500 cm^{-1} and the other at about 22500 cm^{-1} , nearly at the same energy as the second one (21500 cm⁻¹ in (*I*)), which is not expected to be modified.

Conclusions

 $\mathcal{L} = \mathcal{L} \mathcal{L} = \mathcal{L} \mathcal{L} \mathcal{L} = \mathcal{L} \mathcal{L} \mathcal{L} = \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} = \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} = \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L}$ A series of d cationic complexes $\{Nl(NO)P_3\}$ PF_6 (P = PMe₃, PEt₃, PMe₂Ph) have been synthesized and characterized. The crystal structure indicated that the cation $\{Ni(NO)(PMe₃)₃\}^+$ is tetrahedral and not significantly distorted from C_{3v} symmetry, if thermal disorder is considered. The $Ni-N-O$ angle of 175.4(5)° shows that the molecule belongs to the ${M-NO}$ complexes with linear M-NO group.

Acknowledgments

The authors are indebted to Professor R. D. Γ and Γ is a summer to Γ and to Dr. Γ . $\$ Feltham for helpful discussions and to Dr. J. Galy for his interest in this work. This research was supported by the Centre National de la Recherche Scientifique
and the North Atlantic Treaty Organization (NATO).

References

1 J. H. Enemark and R. D. Feltham, Coord. Chem. Rev., 13, 339 (1974). R. D. Feltham and J. H. Enemark 'Structure of Metal Nitrosyls' in 'Topics in Stereochemistry' Vol. 12, Geoffrey G. L. Editor, Wiley.

- 2 J. H. Enemark, *Inorg. Chem.*, 10, 1952 (1971).
- 3 K. J. Haller and J. H. Enemark, Inorg. Chem. 17, 3552 $(1978).$
- 4 J. Kriege-Simondsen, G. Elbaze, M. Dartiguenave, R. D. Feltham and Y. Dartiguenave, *Inorg. Chem.*, 21, 230 $(1982).$
- *H. Meiners, C. J. Rix, J. C. Clardy and J. G. Verkade,* Inorg. Chem., 14, 705 (1975); J. O. Albright, F. L. Tanzella and J. G. Verkade, J. Coord. Chem., 6, 225 (1976). 6 D. Berglung and D. W. Meek, *Znorg. Chem., 11, 1493*
- 6 D. Berglung and D. W. Meek, *Inorg. Chem.*, 11, 1493 (1978). *(1978)*.
- *(a)*, G. Albano, P. *(A)*, 2420 (1971).
- 8 M. DiVaira, C. A. Ghilardi and L. Sacconi, *Inorg. Chem.*, *15*, 1555 (1976).
- J. A. Kaduk and J. A. Ibers, *Israel J. of Chemistry*, 15, 143 (1976/1977).
- 10 W. Wolfsberger and H. Schmidbauer, Synth. Inorg. Met.-Org. Chem., 4, 149 (1974).
- 11 S. Bhaduri, B. F. G. Johnson and T. W. Matheson, J. Chem. Soc. Dalton, 561 (1977).
- 12 D. T. Cromer and J. T. Waber, 'International Tables of Xray Crystallography' J. A. Ibers and W. C. Hamilton, Eds, Kynoch Press, Birmingham, England, 1974; Vol. IV, Table 2.2A, pp. 72–79, D. T. Cromer, *Ibid.*, Table 2.3.1, p. 149. $p. 149.$
- *Chem. Phys., 42, 3175 (1965). Chem. Phys., 42, 3175 (1965).*
- 14 A. Mari, A. Gleizes, M. Dartiguenave and Y. Dartiguenave, *Inorg. Chim. Acta, 52, 83 (1981).*
- 15 C. A. Tolman, *Chem. Rev.*, 77, 313 (1977).
- 16 J. G. Verkade, Coord. Chem. Rev., 9, 1 (1972-1973).
- 17 M. Elian and R. Hoffmann, Inorg. Chem., 14, 1058 $(1975).$
- 18 L. Pauling, 'The Nature of the Chemical Bond', Cornell University Press, Thrid Edition, p. 260-261.