Reaction between Several Binuclear Copper(H) Complexes and Oneelectron Donors, **such as TMPD** and $[Cu(bip)_2]$ ^{\cdot}

YUZO NISHIDA, NAOYASU OISHI and SIGEO KIDA

Department of Chemistry, Faculty of Science, Kyushu University 33, Fukuoku 812, Japan

Received February 27,198O

Recently we have reported [l] that some binuclear copper(11) complexes of planar structure (for exmaple, $\left[\text{Cu(pia)}\right]$ and $\left[\text{Cu(doe)}\right]^*$, see Fig. 1) are easily reduced to copper (I) complexes by two-electron donors, such as ascorbic acid and 3,5-di-tbutylcatechol, whereas such a redox reaction does not occur between a two-electron donor and a mononuclear square planar copper(I1) complex, such as $[Cu(acac)₂]$ and $[Cu(salen)]$. In this paper, we report that planar binuclear copper(H) complexes show quite different behaviour from planar mononuclear copper(11) complexes in the reaction with oneelectron donors, such as TMPD and $\left[\text{Cu(bip)}_{2}\right]^+$, where TMPD and bip represent N,N,N',N'-tetramethyl-p-phenylenediamine and 2,2'-bipyridine, respectively.

TMPD is a colorless compound, but its oxidized form, TMPD⁺ is blue, showing strong absorption bands at 560 and 608 nm in alcohol [2]. No remarkable color change was observed when TMPD was mixed with a planar mononuclear complex in methanol and left to stand at 20 \degree C in an aerobic condition for several hours. This indicates that no TMPD⁺ is formed under such conditions. However, a remarkable blue color developed immediately when a binuclear copper(I1) complex was added to a methanol solution of TMPD in an aerobic atmosphere. Figure 2 shows absorbance at 560 nm (due to TMPD') as a function of time obtained for the

Fig. 1. Copper(H) complexes cited in this paper. For the properties of binuclear complexes, see references: [Cu(pia)] $[8]$, $[Cu(doe)]^+$ [9] and $[Cu(Et-2-3)]^+$ [10].

 $\frac{1}{2}$ Change of chearbance at 560 nm () in the sys t_{cm} of TMPD (2.25 \times 10⁻⁴ mol/l) and [Cu(Et-2.3)]^+ (2.5 \times 10^{-5} mol/l) at 15 °C. Measurement was initiated 10 seconds after the solution was exposed to air.

Fig. 3. Relative V_0 (o) at various ratios of TMPD to [Cu(Et- $2-3$]⁺ in methanol at 15 °C. Total concentration of (TMPD + $[Cu(Et-2-3)]^{+}$) was fixed at 2.5 \times 10⁻⁴ mol/l.

methanol solution of TMPD and [Cu(Et-2-3)]' (cf: Fig. 1). Similar results were also observed for the mixed solution of TMPD and $\left[\text{Cu}(doe)\right]^+$ and/or $[Cu(pia)]$. However, very little formation of TMPD⁺ was detected in a solution containing a binuclear copper(11) complex and TMPD under a nitrogen atmosphere. These results indicate that the oxidation of TMPD occurs only when both binuclear complex and $O₂$ molecule are present in a solution.

According to a conventional method [3], we can evaluate the relative velocity of TMPD' formation at $t = 0$, V_0 (= $\Delta A/\Delta T$, cf. Fig. 2). It was found that V_0 is dependent on the binuclear complex used and also on the ratio of TMPD to binuclear complex. The latter relation was exemplified by the system of TMPD and $\lbrack Cu(Et-2-3) \rbrack$ in Fig. 3. Similar curves were also obtained for the $\lceil Cu(pia) \rceil$ and [Cu(doe)]'-TMPD systems. These results indicate that the largest V_0 is attained at the ratio of 2:1 of TMPD to the binuclear complex. Thus, we propose that the oxidation of TMPD by binuclear copper(I1) complex and $O₂$ proceeds by the following mechanism.

2 TMPD + Cu(II)-Cu(II) \rightarrow

$$
{\text{(TMPD)}_2 \cdot (Cu(II)-Cu(II))}
$$

 $\{(TMPD)₂ \cdot (Cu(II)-Cu(II))\} + O_2 \rightarrow$

2 TMPD⁺ + Cu(II)-Cu(II) + O_2^{2-}

It is known that $\left[\text{Cu(bip)}_{2}\right]^{+}$ is slowly oxidized by $O₂$ in the air [4]. We have found in this study that the oxidation of $\left[\text{Cu(bip)}_{2}\right]^{+}$ is greatly promoted by the presence of a binuclear copper(I1) complex in the air. The methanol solution of $\left[\text{Cu(bip)}_{2}\right]^{+}$ was prepared by adding a stoichiometric amount of ascorbic acid to $\left[\text{Cu(bip)}_{2}\text{Cl}\right]^{+}$ under an atmosphere of nitrogen. In our experimental conditions, it took $\frac{1}{45}$ minutes for the oxidation of the half $\frac{1}{2}$ and $\frac{1}{2}$ $\frac{1}{2}$ in an aerobic condition, where $\frac{1}{2}$ cu($\frac{1}{2}$) in an account condition, μ_{total} and σ_{total} is the presence of a binuclear ed by about seven times in the presence of a binuclear copper(II) complex.

Fig. *4.* Proposed cycle of electron-transfer reactions in lactions are as a control and a control and a control and a control actions and categories are associated and
Separate and categories and categories and categories and categories and categories and categories and categori has [*i*]. But

Our present results seem to be very important in elucidating the function of copper proteins in the biological systems. For example, the following cycle of electron-transfer reactions was proposed for an enzymatic reaction of laccase $[5]$ (cf. Fig. 4). The so- $\frac{1}{2}$ and Type-I and Type-II copper are incorporated in μ as μ and μ are copper are morphened in protein as mononuclear copper (II) complexes, but for Type-III copper, a binuclear structure has been proposed because of its ESR non-detectable nature [6]. In the above mechanism, it is noteworthy that reduced Type-I and Type-II copper are oxidized $\frac{1}{2}$ simultaneous ly $\frac{1}{2}$ only in the presence of Type-III competitive complex. Thus, our presente reaction III copper(II) complex. Thus, our present reaction
(the oxidation of TMPD (or $[Cu(bip)_2]^{\dagger}$) by O₂ and a binuclear copper(I1) complex) may provide a model for a part reaction of laccase, the so-called 'concerted electron-transfer reaction' [7].

References

- 1 N. Oishi, Y. Nishida, K. Ida, and S. Kida, submitted. **N. OISNI, Y. NISNIGA, K. IGA, and S. KIGA, SUDMITTEG.**
- \overline{c} T. Sakata and S. Nagakura, Bull. Chem. Soc. Jpn., 42, 1497 (1968). *3* For example, E. Zuffren and P. L. Hall, 'The Study of
- In example, E. Zuiffen and P. L. Hall, The Study of Enzyme Mechanism', Wiley, New York (1973), chapter 4 J. A. Arce, E. Spodine and W. Zanudio, *J. Inorg. Nucl.*
- 4 *A.* Arce, *E.* Spodine and *W. Lanudio, J. Inorg Chem., 37, 1304 (1975); ibid., 38, 2029 (1976).*
- 5 L-E. Andreasson and B. Reinhammer, *Biochim. Biophys. Acta, 568, 145 (1979)*; B. Reinhammer and Y. Oda, 6 R. Malkin and B. G. Malmstrom, *Adv. Enzymol.. 33, 177*
- 6 R. Malkin and B. G. Malmstrom, Adv. Enzymol., 33, 177 (1970); J. A. Fee, Structure and Bonding, 23, 1 (1975).
- 7 B. J. Carrico, B. G. Malmstrom and T. Vanngard, Eur. J. *Biochem., 22, 127 (1971).*
- 8 J. A. Bertrand and J. A. Kelley, *Inorg. Chim. Acta, 4, 203* (1970). 9 J. A. Bertrand, J. H. Smith and P. Garyeller, *Inorg. Chim.*
- *A. Bertrand, J. H. Smit* 10 Y. Nishida, F. Numata, and S. Kida, *Znorg. Chim. Acta,*
- *III. III.* $\overline{189}$