On the Electronic Structure of Compounds with FeSMo Units. Properties of $[Cl_2 FeS_2 MoS_2]^{2-}$ (M = Mo, W)

A. MÜLLER, R. JOSTES, H. G. TÖLLE

Fakultät für Chemie, Universität Bielefeld, D-4800-Bielefeld, F.R.G.

A. TRAUTWEIN and E. BILL

Fachbereich angewandte Physik der Universität des Saarlandes, D-6600 Saarbrücken 11, F.R.G and Institut für Physik, Medizinische Hochschule, D-2400 Lübeck, F.R.G.

Received September 8, 1980

Recent EXAFS (Mo K edge) results for the FeMo protein of nitrogenase (from C. pasteurianum and A. vinelandii) and the low molecular weight iron-molybdenum cofactor (FeMo-co, isolated from the FeMo proteins with the Mo:Fe:S ratio $\approx 1:8:6$ [1]) have shown that the Mo environment within the MoS_mFe_n cluster is very similar (3 or 4 bound S atoms with Mo–S distances of ≈ 2.36 Å and 2 or 3 Fe atoms with Mo-Fe distances of ≈ 2.72 Å [2]. Zumft [3] has shown that the treatment of the FeMo protein of C. pasteurianum leads to MoS_4^{2-} (The MoS_4^{2-} ion is most probably also responsible for the Cu deficiency disease in ruminants [4]). It may be possible that the above mentioned cluster type of FeMo-co will be synthesized in the near future from MoS_4^{2-} , which was first used by us as a ligand in transition metal coordination compounds [5]. (Fe-S-Mo linkages may be important in two different non-nitrogenase proteins of the genus Desulfovibrio, too [6]). It should be worthwhile to study the electronic structure of compounds with FeSMo moieties like [Cl₂- FeS_2MoS_2 ²⁻, having similar Mo--Fe distances as FeMo-co [7]. [Cl₂FeS₂WS₂]²⁻, the preparation of which is first described in this note, is also investigated.

Experimental

 $[(C_6H_5)_4P]$ $[(C_6H_5CH_2)(CH_3)_3N]$ $[Cl_2FeS_2-MoS_2]$ was prepared as previously described [7]. $[(C_6H_5)_4P]$ $[(C_6H_5CH_2)(CH_3)_3N]$ $[Cl_2FeS_2WS_2]$: a solution of 0.2 g FeCl_2·4H_2O and 0.4 g $[(C_6H_5-CH_2)(CH_3)_3N]$ Cl in 50 ml CH_3CN is added to a solution of 1 g $[(C_6H_5)_4P]_2WS_4$ in 100 ml CH_3CN. After filtration and addition of 80 ml diethyl ether to the solution, red crystals of the compound precipitate. The W compound is isostructural with the Mo compound [7] (Crystallographic data of the W com-

L 2 -4 -3 -2 -1 0 1 2 3 4 [mm/s]

Fig. 1. Mössbauer spectrum of $[(C_6H_5)_4P][(C_6H_5CH_2)-(CH_3)_3N][Cl_2FeS_2MoS_2].$

pound: triclinic; P1; a = 13.263(3), b = 15.051(3), c = 10.087(2) Å, $\alpha = 82.07(2)$, $\beta = 81,69(2)$, $\gamma = 74.44(2)^{\circ}$; Z = 2).

The electronic absorption spectra were recorded with a Beckman Acta M IV spectrophotometer in CH₃CN solutions. Infrared spectra were obtained with a Perkin Elmer 180 spectrometer from CsI pellets. The resonance Raman spectrum of solid $[(C_6H_5)_4P] [(C_6H_5CH_2)(CH_3)_3N] [Cl_2FeS_2MoS_2]$ was measured with a Coderg instrument (T 800) using an Ar⁺-laser source ($\lambda_E = 4880$ Å, 70 mW) and a rotating cell technique. The magnetic measurements were performed with the Faraday method at 295 K with a Bruker electromagnet (Mn - SU 10 type) and a Sartorius microbalance (type 4411). The cyclic voltammograms were measured using the Polarecord E505/506 of Metrohm Herisau (Pt electrodes as working and auxiliary electrodes, and an Ag/AgCl/ LiCl (sat.) EtOH electrode ($E_N = +0.143$ V) as reference electrode; depolarisator concentrations: 10⁻³ M in 10^{-1} M solutions of $[(C_3H_7)_4N]$ [PF₆] in CH₃CN). The Mössbauer measurements were performed with a standard apparatus in constant acceleration mode with a ⁵⁷Co/Rh (ca. 50 mCi) source at room temperature. The unit cell dimensions of the W compound were determined with a Syntex $P2_1$ four cycle diffractometer.

Results and Discussion

We will mainly refer to the complex

[7], as the results for the corresponding W compound are similar (see Table I).

L122

	$\left[\mathrm{Cl}_{2}\mathrm{FeS}_{2}\mathrm{MoS}_{2}\right]^{2-}$	$\left[\mathrm{Cl}_{2}\mathrm{FeS}_{2}\mathrm{WS}_{2}\right]^{2-}$
⁵⁷ Fe Mössbauer (295 K)		
IS ^a	0.480 ± 0.006	$0.520 \pm 0.012 \text{ mm s}^{-1}$
QS	2.100 ± 0.005	2.270 ± 0.010
Г	0.250 ± 0.003	0.240 ± 0.008
$\mu_{\rm eff} (293 \text{ K})^{\rm b}$	5.0	5.1 BM
Electronic spectrum ^{c,d}	9.5	8.7 kK
	17.1	19.4
	~19.2	22.6
	21.2	24.1
	23.0	26.8
	31.9	
	~35.2	
IR spectrum		
$\nu(M-S_t)$	504/488	$492/482 \text{ cm}^{-1}$
$\nu(M-S_b)$	448	443/438
ν (Fe–Cl)	332/322	331/321
Resonance Raman spectrum ^e		
$\delta_{s}(MoS_{2})_{b}^{f}$	158 cm^{-1}	
$\delta_{s}(MoS_{2})_{t}^{f}$	201	
$2\delta_{s}(MoS_{2})_{b}$ (?)	325	
$\nu_{s}(Mo-S_{b})^{f}$	429	
$\nu_{s}(Mo-S_{t})^{f}$	493	
$2\nu_{s}(Mo-S_{b})$	858	
$v_{s}(Mo-S_{b}) + v_{s}(Mo-S_{t})$	918	
$2\nu_{s}(Mo-S_{t})$	982	
Cyclic voltammogram	E _{red} = -1.2 (irreversible)	$E_{red} = -1.3 V$ (irreversible)

TABLE I. Physical Properties of $[Cl_2FeS_2MoS_2]^{2-}$ and $[Cl_2FeS_2WS_2]^{2-}$.

^aRelative to α -Fe at R.T. ^bCorrected for diamagnetic contributions. ^cThe positions of the bands have been determined by a least-squares fitting. ^dFor ϵ values see Fig. 3. ^eTentative assignment (For the resonance Raman spectrum of MoS₄² see ref. [15]). ^fThe four most intense lines are due to the four A₁ fundamentals of the coordinated MoS₄² ion with local C_{2v} symmetry. (The doubly bridging MoS₄² ligand in [Cl₂FeS₂MoS₂FeCl₂]²⁻ with equivalent bonds gives rise only to intense lines due to two A₁ fundamentals [23]).

The magnetic measurements and ⁵⁷Fe Mössbauer data (Fig. 1) are in agreement with a tetrahedrally coordinated ferrous type high-spin complex [8], although the data differ considerably from those obtained for complexes with ligands such as Cl⁻.

The value of the magnetic moment is significantly smaller than that of $[FeCl_4]^{2-}$ (~5.4 BM for complexes with different cations [9]). The small orbital reduction factor, according to the formula $\mu_{eff} = \mu_{eff}^{s.o.} (1 - 2k^2\lambda/\Delta)$ [9], indicates the strong electron delocalization Fe \rightarrow ligand which increases from the W to the Mo compound as expected.

The low value of the isomer shift (0.480 mm s⁻¹) compared to those of other tetrahedrally coordinated ferrous high-spin complexes containing σ -donating ligands as for example [FeCl₄]²⁻(0.76 mm s⁻¹ [10])

also indicates that the Fe 3d population is relatively low in the thiomolybdato complex (for theoretical background see [8]).

The electronic absorption spectra of both chloro complexes (Fig. 2) are similar to that of $[Fe(WS_4)_2]^{2-}$ [11], suggesting that the observed strong bands are due to transitions within the Fe(MS_4)-chromophore. The spectra of all three species show one band with low intensity in the NIR region, where normally transitions of predominant $d \rightarrow d$ character are expected. However, because bands due to ${}^5E \rightarrow {}^5T_2$ crystal field transitions are expected at much lower energy ($[FeCl_4]^{2-:} \nu_{max} =$ $4060 \text{ cm}^{-1}, \epsilon = 80 M^{-1} \text{ cm}^{-1}$ [12]) strong Fe-MS₄²⁻ interactions have to be taken into account. Therefore it is not possible to distinguish between bands in the usual way ($d \rightarrow d$, ligand \rightarrow metal-CT, metal \rightarrow

Fig. 2. Electronic absorption spectra of $[Cl_2FeS_2MoS_2]^{2-}$ (-----), and $[Cl_2FeS_2WS_2]^{2-}$ (-----). (For comparison the spectrum of $[(C_6H_5)_4P]_2[Fe(WS_4)_2]$ in CH_2Cl_2 (.....) is included.

ligand-CT, and ligand-internal transitions). The bands of medium intensity (17.1 and 19.2 kK for the Mo, 19.2 and 22.6 for the W complex) have to be assigned to transitions between MOs delocalized over the whole complex though a charge transfer character should be predominant. The higher energy bands rougly correspond to ligand internal transitions. The splitting is due to the lower symmetry in the complexes (MoS_4^{2-1} : $\nu_1 = 21.4$ kK, $\nu_2 = 31.5$ kK; WS_4^{2-1} : $g_1 = 25.5$ kK [14]). According to the stronger Fe- MoS_4^{2-1} interaction the deviations from the free ion values are more pronounced in the Mo complex.

The vibrational infrared spectrum shows the typical splitting pattern of the bidentate coordinated MoS_4^{-1} ligand $\nu(Mo-S_t)$ at higher wave numbers and $\nu(Mo-S_b)$ at lower wave numbers) [15]. These vibrations are rather pure according to a normal coordinate analysis and the measurements of metal isotope shifts (Ni, Zn, Mo) in the corresponding compounds [Ni(MoS_4)_2]^{2-} [16] and [Zn(MoS_4)_2]^{2-} [17].

An interesting resonance Raman effect (preliminary results) has been observed using a 4880 Å line, which lies within the absorption band of the 21.2 kK transition (see Fig. 2). The spectrum shows the strongly enhanced lines due to the fundamentals ν (Mo-S_t), ν (Mo-S_b), and other lines listed in Table I. As only vibrations of the MoS_4^{2-} chromophore are practically affected, the 21.2 kK transition is predominantly a ligand internal one. In contrast to species of the type $[M'(MO_nS_{4-n})_2]^{2-}$ (M' = Ni, Co; M = Mo, W; n = 0, 1, 2) [11, 13, 18] the $[Cl_2 FeS_2 MS_2]^{2-1}$ ions do not show reversible reduction processes. The d electron delocalization, which is limited to a smaller fragment in the chloro complexes, accounts for the ability of the trimetallic systems like

$$[\operatorname{Co}(WS_4)_2]^{2-} \rightleftharpoons [\operatorname{Co}(WS_4)_2]^{3-} \rightleftharpoons [\operatorname{Co}(WS_4)_2]^{4-}$$

to exist with a range of electron population.

The electronic structure of $[Cl_2 FeS_2 MoS_2]^{2-}$ was studied by SCCC EH calculations, from which we obtained the following results. Since the Fe 3d

AOS have essentially the same energy (~ -90 kK) as the HOMO of the free MoS_4^{2-} , which is located on the sulfur atoms [14] $(t_1: -85 \text{ kK})$, the latter acts as a strong σ -donor ligand, but also as a strong π -acceptor because of its low-lying unoccupied orbitals (2e: -61 kK [19]). Due to the complex formation the electron density at the Fe centre is decreased and it is increased at Mo compared to the free MoS_4^{4-} . The electron density at the terminal S atoms is only slightly reduced. (The overlap populations and thus the bond orders are increased in the Mo-St bonds and decreased in the Mo-S_b bonds). The calculation therefore suggest that further complex formation should be possible at the terminal S atoms of a Fe-(MoS₄) moiety [7]. (The Fe \rightarrow M electron delocalization is stronger in the Mo complex than in the W complex). According to the Fe-Mo distance (2.775 A [7]) metal-metal bonding has to be taken into consideration. This is in agreement with the calculated values of the overlap integrals between Fe 3d and Mo 4d AOs at the above mentioned distance.

The replacement of two coordination sites of $[FeCl_4]^{2-}$ by the bidentate π -acceptor MoS₄²⁻ ligand leads to a drastic electron density reduction at the central Fe atom. The electron delocalization is even stronger in $[Cl_2 FeS_2 MoS_2]^2$ than in $[Fe(SPh)_4]^2$ -[20] and $[Fe(S_2 - o-xyl)_2]^2$ [21] (replacement of all σ -donor ligands) according to the Mössbauer and susceptibility data of the latter compounds. The ability of MoS_mFe_n groups present in the FeMo proteins to delocalize and transfer electron density could be supported by similar studies of other compounds with FeSMo moieties (see also [22]). The MO calculations have shown that the MoS_4^{2-} anion can act as a multibridging ligand. A doubly bridging MoS₄² ligand, which can be identified by the resonance Raman effect [23], exists in the complex $[\rm Cl_2FeS_2-MoS_2FeCl_2]^{2-}$ [23, 24]. The compound can easily be prepared directly from the components [23]. (More Fe atoms can probably be coordinated to the MoS₄ unit in the reduced complex). Cu complexes with doubly and triply bridging MoS_4^{2-} ligands having the following core units.

[25] are also known.

Acknowledgements

The financial support of the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, and the Minister für Wissenschaft und Forschung (NRW) is gratefully acknowledged. We thank Prof. R. R. Filgueira for some contributions.

References

- 1 V. K. Shah and W. J. Brill, Proc. Nat. Acad. Sci. U.S.A., 74, 3249 (1977).
- 2 S. P. Cramer, K. O. Hodgson, W. O. Gillum and L. E. Mortenson, J. Am. Chem. Soc., 100, 3398 (1978); S. P. Cramer, W. O. Gillum, K. O. Hodgson, L. E. Mortenson, E. I. Stiefel, J. R. Chisnell, W. J. Brill and V. K. Shah, J. Am. Chem. Soc., 100, 3814 (1978). 3 W. G. Zumft, European J. Biochem., 91, 345 (1978).
- 4 E. J. Underwood, 'Trace Elements in Human and Animal Nutrition', 4th Edn., Academic Press, New York (1977). C. F. Mills, Chem. Britain, 15, 512 (1979) and Phil. Trans. Roy. Soc. London, B288, 51 (1979); N. J. Clark, S. H. Lauric, J. Inorg. Biochem., 12, 37 (1980).
- 5 F. A. Cotton and G. F. Wilkinson, 'Advanced Inorganic Chemistry', 4th Edn., Wiley, New York (1980); A. Müller and E. Diemann, Chem. Comm., 65 (1971); A. Müller, E. Ahlborn and H. H. Heinsen, Z. Anorg. Allg. Chem., 386, 102 (1971).
- 6 J. J. G. Moura, A. V. Xavier, M. Bruschi, J. Legall, D. O. Hall and R. Cammack, Biochem. Biophys. Res. Comm., 72, 782 (1976); E, C. Hatchikian and M. Bruschi, Biochem. Biophys. Res.
- Comm., 86, 725 (1979). 7 A. Müller, H. Bögge, H. G. Tölle, R. Jostes, U.
- Schimanski and M. Dartmann, Angew. Chem., 92, 665 (1980);A. Müller, H. G. Tölle and H. Bögge, Z. Anorg. Allg.

Chem., to be published.

- 8 N. N. Greenwood and T. C. Gibb, 'Mössbauer Spectroscopy', Chapman and Hall Ltd, London (1971); P. Gütlich, R. Link and A. Trautwein, 'Mössbauer Spectroscopy and Transition Metal Chemistry', Springer Verlag, Berlin (1978).
- 9 R. J. H. Clark, R. S. Nyholm and F. B. Taylor, J. Chem. Soc. (A) 1802 (1967);

B. N. Figgis, 'Introduction to Ligand Fields', Interscience, New York (1966).

- 10 P. R. Edwards, C. E. Johnson and R. J. P. Williams, J. Chem. Phys., 47, 2074 (1967).
- 11 A. Müller, S. Sarkar, E. Königer-Ahlborn, V. Fleming, R. Jostes, P. J. Aymonino and R. Potthast, to be published.
- 12 C. Furlani, E. Cervone and V. Valenti, J. Inorg. Nucl. Chem., 25, 159 (1963).
- 13 A. Müller, R. Jostes, V. Fleming and R. Potthast, Inorg. Chim. Acta, 44, L33 (1980).
- 14 E. Diemann and A. Müller, Coord. Chem. Rev., 10, 79 (1973);

A. Müller, E. Diemann and C. K. Jørgensen, Structure and Bonding, 14, 23 (1973)

R. H. Petit, B. Briat, A. Müller and E. Diemann, Mol. Phys., 27, 1373 (1974).

- 15 K. H. Schmidt and A. Müller, Coord. Chem. Rev., 14, 115 (1974).
- 16 E. Königer-Ahlborn, A. Müller, A. D.Cormier, J. D. Brown and K. Nakamoto, Inorg. Chem., 14, 2009 (1975).
- 17 A. Müller, H. H. Heinsen, K. Nakamoto, A. D. Cormier and N. Weinstock, Spectrochim. Acta, 30A, 1661 (1974).
- 18 K. P. Callahan and P. A. Piliero, Chem. Comm., 13 (1979).
- 19 R. Kebabcioglu and A. Müller, Chem. Phys. Lett., 8, 59 (1971).
- 20 D. G. Holah and D. Coucouvanis, J. Am. Chem. Soc., 97, 6917 (1975); A. Kostikas, V. Petrouleas, A. Simopoulos, D. Coucouva-
- nis and D. G. Holah, Chem. Phys. Lett., 38, 582 (1976).
- 21 R. H. Holm and J. A. Ibers, in 'Iron Sulfur Proteins' (Ed. W. Lovenberg), Vol. III, Academic Press, New York (1977)
- 22 T. E. Wolff, J. M. Berg, C. Warrick, K. O. Hodgson, R. H. Holm and R. B. Frankel, J.Am. Chem. Soc., 100, 4630 (1978); D. Coucouvanis, E. D. Simhon, D. Swenson and N. C. Baenzinger, Chem. Comm., 361 (1979); E. Stiefel, in 'Molybdenum and Molybdenum Containing Enzymes' (Ed. M. P. Coughlan), Pergamon Press, Oxford and New York, p. 41 (1980).
- 23 A. Müller, S. Sarkar, A. M. Dommröse and R. R. Filgueira, Z. Naturforsch., in press.
- 24 D. D. Coucouvanis, N. C. Baenzinger, E. D. Simhon, P. Stremple, D. Swenson, A. Simopoulos, A. Kostikas, V. Petrouleas and V. Papaefthymiou, J. Am. Chem. Soc., 102, 1732 (1980).
- 25 A. Müller, H. Bögge and U. Schimanski, Chem. Comm., 91 (1980).