Chelation by 1,4,6-Trimethylpyrimidine-2-one with some First Transition Series Metal Ions

MARGARET GOODGAME and KEITH W. JOHNS

Chemistry Department, Imperial College of Science and Technology, London SW7 2A Y, U.K. Received February 14,198O

Preparations are reported of complexes of 1,4,6 the paramons are reported by complexes by 1,4,0² ions manganese to zinc. With manganese and nickel salts mangunese to zinc. With mangunese and nickel plexes by weakly coordinating anions, this cheatle comarrangement of ligands of *ligands* with a *jacial* in the other metal in the metal in arrangement of ligands. With the other metal ions, Nbonded pyrimidinones are present. The two modes of *coordination may be distinguished by their infrared spectra in the v(C=O) region.*

Introduction

With the binding of heavy metals to nucleotide with the binding of heavy metals to increditude bases now well-established, a question of continuing interest is the possibility of interaction between the metal ion and the exocyclic oxygen atom of pyrimidinones. Uracils have recently been shown to bind strongly to metals ions [1] and, when deprotonated, even to chelate [2]. Indeed, such binding may have considerable effect on the conformations of nucleic acids [3]. However, with bases such as cytosine and guanine, which in the uncharged state contain unprotonated ring nitrogen atoms, it is normally the nitrogen, rather than the keto-oxygen, which binds strongly to a metal ion, with, at most, a much weaker metal-oxygen interaction. We now report a series of complexes of $1,4,6$ -trimethylpyrimidine-2-one (I) with divalent metal ions, some of which contain chelating uncharged pyrimidinones.

Experimental

The complexes were prepared by the following ine complexes were prepared by the ronowing general method. The metal salts were dissolved in ethanol, plus some dimethoxypropane, and added to a solution of the pyrimidinone in ethyl acetate. In

most cases, precipitates were formed after a few minutes heating, but in a few cases diethylether was added to induce precipitation.

For the iron compounds the preparation was carried out under nitrogen. The complex of cobalt perchlorate could be obtained as above, but better crystals were obtained from pure ethanol, and these were used for the structure determination and all measurements.

The compound $Ni₂L₃Br₄$, made by the general method, was obtained as an oil. This was dissolved in ethanol and evaporated to low bulk. After two further such treatments, crystals were obtained. The complex $Ni₂$ was made by refluxing nickel chloride with ligand in a mixture of ethyl acetate and 2,2dimethoxypropane.

Analytical results for the compounds are given in Table I. Physical measurements were made as described previously [4].

Results and Discussion

The compounds we have prepared are listed in Table I. With manganese and nickel salts of weakly coordinating anions, there is a tendency for complexes with a 3:l ratio of pyrimidinone (= L) to metal ion to be formed, even when other ratios were ustal follow to be formed, even when other fattes were σ (C) σ \sim σ $(CIO₄)₂$ gives an X-band e.p.r. spectrum consisting of numerous bands, all below 650 mT, indicative of a D value of less than about 0.10 cm^{-1} . A good simulation of this spectrum may be obtained [5] with $D =$ 0.05 cm⁻¹ and λ = 0.01. The distortion from octahedral micro-symmetry is therefore very small and comar incro-symmetry is therefore very small and $\frac{1}{2}$ systems. Uniparable with that found in some mile 5 systems. The lack of magnetic interaction between adjacent manganese ions strongly suggests a monomeric structure for the complex, and the low distortion indicates a facial, rather than meridional, chelation. Such trischelates have been reported 161 with the related Ils-chelates have been reported $|0|$ with the related ligand 1,4,6-trimethylpyrimidine-2-thione, the man-
ganese complex of which gives a very similar e.p.r. spectrum to the one reported here.

Compound	Colour	% Found			% Calculated		
		\mathbf{C}	H	${\bf N}$	$\mathbf C$	H	N
$MnL2Cl2·7H2O$	Pale Pink	32.02	5.87	10.49	31.83	6.49	10.60
$MnL_2Br_2.3H_2O$	Pale Pink	31.02	4.96	10.29	30.84	4.81	10.28
$MnL4I2·2H2O$	Pale Pink	37.12	5.19	12.40	37.47	4.94	12.48
$MnL_3(C1O_4)_2$	Pale Pink	37.74	4.41	12.14	37.73	4.52	12.57
FeL ₂ Cl ₂	Yellow	39.50	4.62	13.04	41.72	5.00	13.90
FeL ₂ Br ₂	Yellow	33.80	4.00	10.69	34.18	4.10	11.39
CoL ₂ Cl ₂	Royal Blue	41.06	5.00	14.45	41.40	4.96	13.79
CoL ₂ Br ₂	Royal Blue	34.10	4.10	11.17	33.96	4.07	11.32
CoL ₂ I ₂	Turquoise	30.21	3.56	9.28	28.54	3.42	9.51
$CoL4(ClO4)2$	Cerise	41.80	5.35	13.45	41.49	4.97	13.82
$CoL2(NO3)2$	Cerise	36.29	3.88	18.33	36.61	4.39	18.29
Ni ₂	Salmon	31.67	4.64	10.47	31.40	3.76	10.46
NiL ₂ Br ₂	Red	33.94	4.05	11.27	33.97	4.07	11.32
NiL ₂ Br ₂	Orange	34.03	4.02	11.55	33.97	4.07	11.32
$Ni2 L3 Br4$	Green	29.67	3.55	9.83	29.62	3.55	9.87
$Ni2L3Br4 \cdot 12H2O$	Pale Green	23.81	4.49	7.96	23.62	4.91	7.87
NiL ₃ I ₂	Green	34.41	3.88	11.00	34.69	4.16	11.56
$NiL3(NO3)2$	Green	42.25	4.53	18.89	42.22	5.06	18.76
CuL ₂ Cl ₂	Blue-grey	40.65	4.92	13.39	40.93	4.91	13.64
CuL ₂ Br ₂	Yellow-green	33.68	4.16	10.78	33.65	4.03	11.21
$CuL4(ClO4)2 \cdot C2H5OH$	Grey-green	41.64	5.03	12.40	41.83	5.38	13.00
ZnL_2Cl_2	White	39.74	4.43	13.17	40.75	4.89	13.58
ZnL_2Br_2	White	33.29	3.96	11.25	33.53	4.02	11.17
ZnL_2I_2	White	29.10	3.48	9.49	28.24	3.38	9.41
$\text{ZnL}_4(\text{ClO}_4)_2$	White	41.19	4.86	13.74	41.17	4.93	13.72
$ZnL_2(NO_3)_2$	White	36.02	4.47	17.88	36.11	4.33	18.04

TABLE I. Analytical Results for Complexes of 1,4,6-Trimethylpyrimidinone.

TABLE II. Diffuse Reflectance Spectra of Complexes of 1,4,6-Trimethylpyrimidinone.

 $\overline{t_{\text{Absorption below } 5000 \text{ cm}^{-1}}$. *Partially obscured by charge-transfer band.

The electronic spectra (Table II) of $NiL₃(NO₃)₂$ and $NiL₃I₂$ are very similar to one another, showing the three unsplit bands expected for a regular octahedron with $\Delta = ca$. 8700 cm⁻¹, a reasonable value for an $NiN₃O₃$ chromophore. The band intensity, however, is somewhat higher than that normally seen for a regular octahedron, suggesting, again, a facial arrangement of ligands.

These two compounds both show a strong band in the infrared spectrum at about 260 cm^{-1} , which we assign to a mode having appreciable metal-ligand stretching character, but necessarily involving also movement of the whole chelate ring. The manganese chelate complex $MnL_3(C1O_4)_2$ shows a similar strong band at 245 cm^{-1} . In the 1600 cm⁻¹ region, 1,4,6-trimethylpyrimidine-2-one has a strong, composite band with components at about 1585, 1607 and 1650 cm^{-1} , and a slightly weaker band at 1545 cm⁻¹. In the chelated complexes, the three components of the 1600 cm⁻¹ band are much less well resolved. For $MnL_3(ClO_4)_2$ three components can still be seen, at 1573 , 1593 and 1613 cm⁻¹, but for the nickel compounds there is only a strong broad band centred on about 1580 cm^{-1} (Fig. 1). The 1545 cm^{-1} band has disappeared in these chelates, presumably having moved either to higher energy, near 1580 cm⁻¹, or to much lower energy. Spectra in KBr discs show strong absorption near 1440 cm^{-1} , but the ligand itself has a band at 1432 cm^{-1} .

With nickel bromide two different compounds are obtained, depending on the ratio of ligand to metal ion used for the preparation. With a 1:1 ratio, the green complex formed has the stoichiometry Nil_{15} . Br₂. Its electronic spectrum shows bands indicative of both an octahedral and a tetrahedral species (Table II). The intense bands are very similar to those of the NiBr₄⁻ ion [7], while the remaining bands are reasonably consistent with the presence of a $[NiL₃]²⁺$ chelated cation. The far infrared spectrum is very similar to that of $\text{Nil}_3(\text{NO}_3)_2$, with the addition of a very strong band at 240 cm^{-1} , assigned as $\nu(NiBr)$. This is a little higher than the value reported [8] for the NiBr₄^{$-$} ion. The formulation of the compound as $NiL_3^{2+}NiBr_4^{2-}$ seems reasonable.

This compound rapidly picks up water from the atmosphere to give a pale green compound of stoichiometry $Ni₂L₃Br₄ \cdot 12H₂O$. Its electronic spectrum is indicative of $Ni(H₂O)₆²⁺$ cations, and the far infrared spectrum shows no bands definitely assignable as metal-ligand vibrations. Instead, there is a broad band at about 335 cm^{-1} as commonly found for aqua-ions.

When nickel bromide reacts under anhydrous conditions with the ligand in 1:2 mol ratio, a bright red compound of stoichiometry $NiL₂Br₂$ is formed. In moist air it quickly becomes orange-brown, and eventually decomposes. The red compound has a magnetic moment of 3.47. The positions of the

Fig. 1. Infrared spectra $(1500-1800 \text{ cm}^{-1})$ of $\frac{14.6-}{300}$ t rimethylpyrimidine-2-one $(= L);$ $-- Col₄(ClO₄)₂;$ $\cdots \cdots \cdots$ MnL₃(ClO₄)₂.

bands in the electronic spectrum are consistent with the presence of an octahedron of ligands, albeit with a rather weak crystal field ($\Delta = ca$. 6500 cm⁻¹). However, the bands are very intense, resembling, in this respect, the bands of tetrahedral nickel(I1) species. An octahedral crystal field with such a low Δ value is normally found only with very weak-field ligands such as halide ions, (e.g., Δ for NiCl₃ is 6600 cm^{-1} [9]) and the value suggests that perhaps this compound has an N_2Br_4 octahedron, with bridging bromide ions. However, this should give a split ${}^{3}A_{2g}$ \rightarrow ${}^{3}T_{2g}$ transition, whereas the band observed is unsplit. Moreover, the far infrared spectrum shows a very strong band at 225 cm^{-1} , which is most reasonably assigned as due to Ni-Br stretching. This value is intermediate between those normally found for octahedral and tetrahedral complexes with terminal nickel-bromide bonds. It is inconsistent with a chain structure based on bridging bromide ions. What seems most probable is a structure intermediate between an octahedron and a tetrahedron, as found for the cobalt complex of pyrimidine-2-thione [lo] . The nickel would then be surrounded by an approximately tetrahedral N_2Br_2 arrangement, with two somewhat weaker Ni-O bonds completing a very distorted cis-octahedral array.

Despite variations in the ratio of ligand to metal ion, the only complexes obtained from nickel chloride had 1:1 stoichiometry. Under strictly anhydrous conditions, a pink complex $Ni_{LCl₂}$ is obtained. Its electronic spectrum indicates an essentially octa-

hedral structure, being similar to that of Niquino $lineCl₂$. A very strong infrared band at 273 cm⁻¹ is then reasonably assigned as $\nu(Ni-Cl)$ of a doublestranded chloride-bridged chain structure [11]. This band is broadened to low energy, and could conceal another band near 250 cm^{-1} . Strong bands at 281 and 256 cm^{-1} are reported [11] for NipyridineCl₂.

With the manganese halides, only hydrated complexes were formed. The e.p.r. spectrum of the chloride gives only a $g_{eff} = 2$ signal, indicative of magnetic exchange within the lattice, though whether this is through chloride bridges or hydrogen-bonding interactions is not clear. The bromo-complex, in contrast, gives its strongest line at $g_{eff} = 3.75$, and numerous weaker transitions extending to high field. This is indicative of either an $MnL₂Br₂$ tetrahedron, or a rhombically distorted octahedron. The low energy infrared spectrum shows no evidence of coordinated water, and is in fact very similar to that of $NiL₂$ - Br_2 , with $\nu(M-Br)$ at slightly lower energy.

In contrast to this tendency to chelation with manganese and nickel, with cobalt tetrahedral complexes are readily formed. Cobalt perchlorate reacts with four moles of ligand in ethanol to yield $CoL₄$ - $(C1O₄)₂$, the X-ray structure of which has been determined. Full details will be published elsewhere [12], but it may be noted here that it contains $Col₄²⁺$ with a distorted tetrahedron of nitrogen atoms round the cobalt ion. The pyrimidinone oxygen atoms are also fairly close to the metal ion $(2.7-2.8 \text{ Å})$ but at this distance any bonding interaction must be quite weak.

With the cobalt halides, complexes CoL_2X_2 are formed, which have normal electronic spectra for $CoN₂X₂$ chromophores, and ν (Co-X) in the normal range for such species. In the 1600 cm^{-1} region, for these compounds, as for $CoL₄²⁺$, three bands are clearly resolved, one near 1550 cm^{-1} , and two very strong bands near 1600 and 1650 cm^{-1} (Fig. 1), affording a reasonably clear distinction from the compounds containing chelating L.

The zinc complexes are very similar to those of cobalt. The stoichiometries are the same throughout the series, the two perchlorates are isomorphous, and the halides give similar infrared spectra in both the 1600 cm^{-1} and the low energy region. On the basis of infrared and electronic spectra, the ferrous complexes also appear to have $FeN₂X₂$ tetrahedral structures.

The complexes formed with copper(H) ions are similar to those of pyrimidine-2-one and of cytosine. These contain [13, 141 N-bonded ligands, with the carbonyl oxygens in position to form very weak M-O bonds. The infrared spectra of the trimethylpyrimidinone compounds are consistent with essentially N-bonding.

Conclusions

It is clear that under some conditions pyrimidinones can chelate to metal ions, though this tendency is much less dominant than with the thiones. As with the corresponding thiones, chelation is greatly enhanced in 1,4,6-trimethylpyrimidine-2-one compared with pyrimidine-2one itself.

Amongst the compounds reported here, chelation is limited to compounds of manganese and nickel, and may well be related to the desire of the metal ion to achieve octahedral coordination. Moreover, strong chelation appears only in the trischelates ML_3^2 ⁺, formed in the presence of rather weakly-coordinating, bulky anions. The achievement of an octahedral ligand field without chelation requires either a stoichiometry ML_4X_2 , or ML_2 - X_2 with bidentate (possibly bridging) anions. The first of these would involve very considerable steric crowding, and the second, with anions such as nitrate and bromide, may give lower overall bond energies than those achieved by chelation.

The situation in biological molecules, where it is unlikely that more than one pyrimidinone ligand is coordinated, will be considerably different. However, it is clear that the keto-oxygen is capable of filling a coordination site, especially when steric factors are favourable for this.

Acknowledgements

We thank the SRC for a studenthsip (to K. W. J.) and Dr. J. F. Gibson for the use of computer programs.

References

- 1 B. A. Cartwright, M. Goodgame, K. W. Johns and A. C. Skapski, *Biochem. J., 175, 331* (1978).
- 2 B. F. Fieselmann, D. N. Hendrickson and G. D. Stucky, Borg. *Chem., 17,* 1841 (1978).
- 3 N. C. Seeman, J. M. Rosenberg, F. L. Suddath, J. J. P. Kim and A. Rich, *J. Mol. Biol., 104,* 109 (1976).
- 4 M. Goodgame and K. W. Johns, *J. Chem. Sot. (Dalton), 1680* (1977).
- rogo (1977).
Heing the program SH APE Q
- 6 D. M. L. Goodgame, and G. A. Leach, Inorg. *Chim. Acta, 25, L127* (1977).
- I D. M. L. Goodgame and F. A. Cotton, J. *Amer. Chem. Soc.*, 83, 4161 (1961).
- 8 A. Sabatini and L. Sacconi, *J. Amer. Chem. Sot., 86, 17* (1964).
- 9 D. M. L. Goodgame, M. Goodgame and M. I. Weeks, J. *Chem. Sot..* 1594 (1964).
- 10 J. Abbot, D. M. L. Goodgame and I. Jeeves, *J. Chem. Sot. (Dalton), 880 (1978).*
- 11 M. Goldstein and R. J. Hughes, *Inorg, Chim. Acta. 37, 71* (1979).
- 12 A. C. Skapski, to be published.
- 13 B. A. C'artwright, C. D. Reynolds and A. C. Skapski, *Acta Ckyst., B33, 1883* (1977).
- 14 M. Goodgame and K. W. Johns, Inorg. *Chim. Acta, 46, 23* (1980).