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In his pioneering work on the anions derived by 
deprotonation of the sulphur imides, S,(NH)s_,, 
where x = 6 or 7, Olsen concluded that the S,N 
and SIN;- anions were in equilibrium with an open 
chain isomer [l] . This conclusion was reinforced by 
the work of Jolly [2] who showed that, above ca. 
-40 “C, the equilibrium between S,N and the open 
chain form is quite facile. Clarification of this 
problem became possible when Chivers and 
Drummond [3] demonstrated the formation of the 
S4N- anion. Subsequently, in an elegant study 
of the thermolysis of S,Ny, Chivers and Oakley (4) 
succeeded in isolating (Ph, P)?N’& N-; a crystallo- 
graphic study showed that the anion adopts a planar 
sickle-shaped geometry for which no single valence 
bond structure is entirely satisfactory [4]. This 
result prompts us to report some data which we 
obtained several years ago but were not able to ratio- 
nalise mechanistically. 

Results and Discussion 

In connection with another project we had need 
for the S,N- anion and, to check for its formation, 
it was decided to trap it at -60 “C with Me,SiCl in 
the expectation of obtaining an acceptable yield of 
S,NSiMe,. To our surprise, we obtained upon work- 
up none of the anticipated product but instead a 
modest yield of S6N2(SiMe3),, along with some Ss 
and the alkylpolysulphides typical of these reactions. 
Hydrolysis of the S6N2(SiMe3)2 with ice-water and 
subsequent thin layer chromatography on silica 
gel gave exclusively the 1,4-isomer of S6 Nz Hz. 

Chivers [5] has suggested the equilibrium (eqn. 1) 
to account for Olsen’s observation [l] of the forma- 
tion of S,NCHs from 1,3-S6N:-and CHsI. 

S,N- z? S4N- f 318 Ss f Y&N;3 + ?4 Ss (I) 

*Author to whom correspondence should be addressed. 

Our original intention had been to suppress this 
equilibrium by working at -60 “C and so maximise 
the formation of S,NSiMe3, but the experimental 
result clearly shows that such was not the case. One 
might suggest that at -60 “C the equilibria were 
spread over the three anions and that the kinetic 
product (i.e., the one derived from 1,4-S6Ni2 was 
the one produced. However, one would expect similar 
activation energies from both S,N- and S6N;- 
anions; furthermore, Olsen [I] has shown that the 
reaction rates of these anions are retarded when 
bulky groups are involved. It is also necessary to 
rationalise the production of only the 1,4-isomer of 
S6NZ(SiMe3)2. 

We believe these difficulties are readily overcome 
by invoking attack on the Me,SiCl, at this low 
temperature, exclusively by the less sterically 
demanding S,N- species. Now, removal of the F&N- 
disturbs the equilibrium and leads to its further 
production. We had considered these ideas some 
years ago, but the then prevailing tentative proposal 
of S4N- as the perthionitrate anion required a 
plethora of rearrangement processes which were not 
mechanistically appealing. Now, however, Chivers’ 
establishment of the correct S,N-structure is entirely 
compatible with the exclusive formation of the 
required 1,4-isomer. In the scheme we propose a 
mechanistic rationale in which one extreme cano- 
nical form of F&N- is chosen to represent the 
structure, and the product arises via dimerisation of 
S4N-SiMe,. 

In the light of these results, one can now ratio- 
nalise the data of Mendelsohn and Jolly [2] who 
reported consistently high carbon and hydrogen 
analytical values on their S,NSiMe3. It is now 
apparent that their product contained about 10% 
S6N2(SiMe3)2. 

Scheme: The formation of 1 ,4-S6 Nz (SiMes)z 
from &N-and Me,SiCl. 

Experimental 

Heptasulphurimide (4.3 g, 18 mmol), prepared as 
described elsewhere [6] , in dry tetrahydrofuran (100 
ml) under a nitrogen atmosphere was treated with 
an equimolar quantity of butyllithium at -60 “C and 
the solution turned blue. A three-fold excess of 
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chlorotrimethylsilane was added to the cold solution 
which was stirred for an hour at this temperature. 
The now orange-red solution was allowed to attain 
room temperature and was stirred overnight. The 
solvent was removed in vucuo, the residue taken up 
in hexane and chromatographed on a silica gel 
column (Baker 6&200 mesh). Elution with hexane 
gave Ss, recovered &NH (20%) and a yellow oil 
(A) (15-20% in a typical reaction). Elution with 
5% benzene gave a vile-smelling yellowish oil (B), 
identified mass spectrometrically (see below) as a 
mixture of dibutyl polysulphides. The quoted mass 
spectral intensities include contributions from corres- 
ponding peaks containing ?j. 

The yellow oil (A) showed infra-red absorptions 
(neat liquid between two KBr plates) at: 2950(s), 
2850(s), 1460(m), 1410(m), 1390(w), 1290(w), 
1265(m), 1250(s), 1215(m), 875(s), 840(s), 800(m), 
755(m), 740(m), 685(m) and 630(m) cm-‘, and a 
‘H nmr singlet at 6 0.31. The mass spectrum (Perkin 
Elmer Hitachi Model RMU-6A) of (A) showed major 
peaks at m/e (%): 366, C6H1sNjj2S6SiG (5.2); 302, 
CgH1sNZS4Sif (1.7); 270, CgH1sNZS3Si; (1.9); 
238, CgH1sN2SZSi~ (3.0); 215, CJHsNS4Si+ (30.9); 
206, CgH18N2SSii (0.9); 119, CaHsNSSi+ (72.0); 
87,CsH9NSi+(59.7);73,CsHgSi+(100). 

Treatment of (A) with ice-water followed by ether 
extraction and thin layer chromatography on 0.1 mm 
air-dried silica gel plates gave a single spot with Rr 
value 0.34. Independently synthesised samples of 
1,3-, 1,4- and 1,5-SgNzHz gave Rf values of 0.22, 
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0.34 and 0.24, in close agreement with the literature 
values [7]. 

The mass spectrum of the oil (B) showed major 
peaks at m/e (%): 306, CsHrsSi (1.0); 274, CsHrs- 
S’, (6.1); 256, S’, (7.8); 242, CsH& (30.0); 224, 
S; (3.5); 217, CqHsS; (8.5); 210, CsH& (64.0); 
192, S’, (9.0); 186, CqHIoS; (5.0); 178, CsHrsS; 
(42.9); 160, S: (9.3); 154, CqHIoS: (14.3); 146, 
CsHrsS+ (5.1); 122, CqHIoS; (100); 89, &Has+ 
(85.7). 
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