Chemiluminescence on Oxidation of Tris $(2,2'$ -bipyridine)chromium(II): Chemical Generation of a Metal-Centered Excited State

F. BOLLETTA*^a, A. ROSSI^a and V. BALZANI^{a,b}

Instituto Chimico "G. Ciamician " *dell'Universitd, Bologna, Italy. Istituto di Fotochimica e Radiazionid'Alta Energia de1 CNR, Bologna, Italy*

Received September 9, 1980

Generation of electronically excited states by very exoergonic chemical reactions is a well known phenomenon in several fields of chemistry [l] . Such reactions are particularly important when they lead to the eneration of luminescent excited states. because of their potential use in electronic display devices [2] and lasers [3]. In the field of coordination compounds there are few examples of chemiluminescent reactions $[1c, 4-9]$. Most of them involve the reduction of $Ru(bpy)_{3}^{3+}$ (bpy = 2,2'-bipyridine) generating the lowest (triplet metal-to-ligand charge transfer) excited state of $Ru(bpy)₃²$, (^{3}CT) [4-7]. The transient observed in the reduction of $Co(bpy)_{3}^{3+}$ by hydrated electrons, first claimed [IO] to be a metal centered (MC) excited state of $Co(bpy)_{3}^{2+}$, has recently been shown to be the ground state $Co(bpy)_{3}^{2+}$ [11]. Thus, none of the known cases involves the generation of MC excited states of transition metal complexes. We report here the results concerning the chemical oxidation of $Cr(bpy)_3^{2^+}$ by very powerful oxidants, showing the generation of a luminescent MC excited state of $Cr(bpy)_3^3$ ⁺.

 $Cr(bpy)_{3}^{3+}$ is known to emit luminescence in fluid solution at room temperature $[12, 13]$. The emitting state is the lowest excited state, 2E_g , which belongs to the same t_{2g}^3 electronic configuration as the ${}^4A_{2g}$ ground state. Spectroscopic measurements show that the ${}^{2}E_{g}$ emission band is very narrow with a peak at 727 nm, corresponding to a zero-zero spectroscopic energy corresponding to a directive specificity. potential of the $Cr(hmv)^{3+/2}$ couple is 0.26 V vs. NHE in aqueous solutions [14], from the thermodynamic point of view the generation of $({}^{2}E_{g})Cr$ - $(bpy)_{3}^{3+}$ on Cr(bpy) $_{3}^{2+}$ oxidation requires the use of an oxidant having reduction potential more positive than $+1.45$ V (eqn. 1).

$$
E_{ox}^0 = -1.45 \text{ V}
$$

Cr(bpy)²⁺₃ + Ox \longrightarrow (²E_g)Cr(bpy)³⁺₃ + Red (1)

$$
E_{red}^0 \ge +1.45 \text{ V}
$$

Potentially useful reactants for reaction 1 are Ω^{2-} H.O. and Ti^{3+} All these species are known to react according to a two-step one-electron mechanism (eqns. 2 and 3), where the reduction potential of the

$$
0x + e^- \longrightarrow 0x^-
$$
 (2)

$$
0x^{-} + e^{-} \longrightarrow 0x^{2-} \tag{3}
$$

first step is rather low $(\le 0.6, \le 0.6$ and 0.31 V for $S_2O_8^{2-}$ [15], H_2O_2 [15], and $T1^{3+}$ [18]) whereas the reduction potential of the second step is very high $(3.4, 2.94, \text{ and } 2.22 \text{ V for } S_2O_8^{2-}$ [15], H_2O_2 [15], and Tl^{3+} [16]).

Freshly prepared deaerated solutions of $Cr(bpy)_{3}^{2+}$ $(1-5 \times 10^{-2} \text{ M})$ and Ox $(1-5 \times 10^{-4} \text{ M})$ in $\text{H}_{2}\text{SO}_{4}$ 0.5 M were mixed in the cell of a Durrum stop-flow equipment. When Ox was $S_2O_8^{2-}$ or $T1^{3+}$, a transient light emission was obtained and recorded on the oscilloscope. A tipical oscilloscope trace for the $Cr(bpy)₃²⁺-S₂O₈²⁻$ system is reported in Fig. 1. By

Fig. 1. Transient chemiluminescence emission at 727 nm of $Cr(bpy)_{3}^{2+}$ 3.5 \times 10⁻³ M oxidized by S₂O₈²⁻ 1 \times 10⁻⁴ M, 20 mV, 10 ms/div.

insertion of suitable cutt-off or interference filters between the mixing cell and the photomultiplier it was possible to show that the emission was in the 700- 750 nm range, as expected for $({}^{2}E_{g})Cr(bpy)_{3}^{3+}$ emission. Check experiments showed that no emission was obtained upon mixing free bpy and $S_2O_8^{2-}$ solutions.

^{*}Author to whom correspondence should be addressed. ^a Istituto Chimico 'Ciamician'.

bIstituto FRAE de1 CNR.

t When light emission occurs from the reaction of ions generated at an electrode surface, the phenomenon is referred as electrogenerated chemiluminescence (ELC).

The most probable reaction scheme for the chemi-The most probable reaction scher

$$
Cr(bpy)_{3}^{2+} + S_{2}O_{8}^{2-} \text{ (or } T1^{3+}) \longrightarrow Cr(bpy)_{3}^{3+} + SO_{4}^{2-} \text{ (or } T1^{2+}) \qquad (4)
$$

 $Cr(bpy)_{3}^{2+}$ + SO₄ (or Tl²⁺) \longrightarrow $(^{2}E_{g})Cr(bpy)_{3}^{3+}$ $+ SO₄²⁻ (or T1⁺) (5)$

 $\frac{1}{2}$ chemical contract when $\frac{1}{2}$ contract w σ cheminimizatelled was obtained with σ (0py)3 solutions were reacted with H_2O_2 . Presumably, OH radicals give an addition reaction to the coordinated bpy ligands [17] rather than an outer-sphere electron transfer reaction with $Cr(bpy)_{3}^{2+}$. For the $Cr(bpy)_{3}^{2-}$ ansier reaction with $C_1(\nu p y)$ ₃. For the $C_1(\nu p y)$ ₃ $(\mathbf{b}\mathbf{b})^3$ or 11 systems, the formation of $(\mathbf{E}_{\mathbf{g}})\mathbf{b}$. $\frac{1}{2}$ first-order kinetical conditions follows a (pseudo) first-order kinetics. A detailed study of these systems will be reported elsewhere.

Acknowledgements

 \mathbf{F} final support from Association \mathbf{F} European Support From Assorting and From European Communities (Contract 360-77-11ESI) is
appreciated.

References

- 1 For reviews, see: (a) F. MC Capra, *Quart. Rev. (London), 2 Wiley, New York, p. 413 (1975).* br reviews, see: (a) F. Mc Capra, *Quart. Rev. (London)*, 485 (1966); (b) E. H. White, J. Di Miano, C. J. Watkins. and E. J. Breaux, Angew. Chem. Int. Ed., 13, 229 (1974); (c) A. W. Adamson, in 'Concepts of Inorganic Photochemistry', A. W. Adamson and P. D. Fleischauer Eds.,
- (1975) . 2 D. Laser and A. J. Bard, J. Electrochem. Soc., 122, 632 R. M. Measures, *Appl. Opt., 13, 1121 (1974); idem, 14,*
- *M. Measures, Appl. Opt., 13, 1121 (1974); idem, 14,* 6. 909 (1975); G. A. Heller and J. L. Jernigan, *ibid.*, 16, 61
(1977). F. E. Lyttle and D. M. Hercules, *Photochem., Photobiol.,*
- *13, 123 (1971).* 13, 123 (1971).
- 5 J. E. Martin, *E. J. Hart, A. W. Adamson, H. Gafney and J.* Halpern, *J. Am. Chem. Soc.*, 94, 9283 (1972).
- 6 C. D. Jonah, M. S. Matheson and D. Meisel, J. Am. Chem.
Soc., 100, 1449 (1978). n. 100, 1449 (1978).
- *bid.*, 95, 6582 (1973). *E.* Tokel and A. J. Bard, *J. Am. Chem. Soc.*, 94, 2862 *(1972)*; N. E. Tokel, R. E. Hemingway and A. J. Bard,
- *Soc., 100, 5790 (1980).* 8 J. C. Luong, L. Nadjo and M. S. Wrighton, J. Am. Chem.
- Q N. E. Tokel and A. J. Bard, Chem. Phys. Lett., 25, 253 $(1974).$ W. L. Waltz and R. G. Pearson, J. *Phys. Chem., 73,* 1941
- $(1969).$ (L. Wa 969).
- Mulazzani, *J. Phys. Chem.*, 83, 439 (1979). G. Simic, M. Z. Hoffman, R. P. Chene.
- J. Chem. Soc. Chem. Commun., 801 (1974). 12 N. A. P. Kane-Maguire, J. Conway and C. H. Langford,
- $(1978).$. Maestri, F. Bolletta, L. Moggi, V. Balzani, M. S. Henry and M. Z. Hoffman, J. Am. Chem. Soc., 100, 2694 978).
- Topics Curr. Chem., 75, 1 (1978). Balzani, F. Bolletta, M. T. Gan
- R. Memming, *J. Electrochem. Soc., 116, 785* (1969).
- Soc. Dalton, 1367 (1974). 16 B. Falcinella, P. D. Felgate and G. S. Laurence, J. Chem.
- 17 M. Simic and N. Ebert, *Int. J. Radiat. Phys. Chem.*, 3, 259 (1971).

 $\overline{}$, and the big difference between the lifetime of (2E. "Due to the big difference between the lifetime of $(^{\circ}E_g)$ - $Cr(bpy)_3^3$ (~50 μs) [15] and the decay time of the observed chemiluminescence, the intensity decay is a probe of the rate
of formation of $({}^{2}E_{g})Cr(bpy)_{3}^{3}$ in the chemical reaction.