Bidentate Isocyanides

1. Synthesis of Disocyanocyclohexanes and some of their Complexes

YOSIMI OHTANI*,**, SIN'YA MIYA, YASUHIRO YAMA-MOTO* and HIROSHI YAMAZAKI

The Institute of Physical and Chemical Research, Wako-shi, Saitama 351, Japan

Received September 2, 1980

Chiral and achiral 1,2- or 1,3-diisocyanocyclohexane derivatives were prepared by three methods: dehydration of N,N'-diformylcyclohexanes by SO₂Cl or POCl₃, and a carbylamine reaction using a transfer reagent. Bidentate isocyanides reacted readily with Pd(cod)Cl₂, [Rh(cod)Cl]₂, [Ir(cod)Cl]₂, and di- μ chloro-bis(N,N-dimethylbenzylamine-2-C,N)dipalla-

dium to give the corresponding dinuclear complexes, respectively. These isocyanides were demonstrated to be useful ligands for the synthesis of dinuclear and polynuclear complexes.

Diisocyanides are useful ligands in the synthesis of dinuclear complexes which have direct metalmetal interactions. Recently, dinuclear isocyanide complexes of rhodium and iridium were found to have unusual spectroscopic and chemical properties, and much attention has been paid to the complexes [1--6]. However, there are only a few bidentate isocyanides. In this study we wish to report the synthesis of some new diisocyanocyclohexanes. Some of their metal complexes are also prepared.

The bidentate isocyanides were synthesized by three general methods: (1) dehydration of N,N'diformamides by thionyl chloride, [7] (2) dehydration of N,N'-diformamides by phosphorus oxychloride, [8] and (3) a carbylamine reaction utilizing the phase transfer reagent, $(PhCH_2)Et_3NCI$ [9]. Yields and spectral data are listed in Table I.

meso-1,3-Diisocyanocyclohexane (meso-1,3-C₈- $H_{10}N_2$) reacted with [Rh(cod)Cl]₂ at room temperature to give dark blue complex 1, [Rh₂(meso-1,3-C₈H₁₀N₂)₄](BPh₄)₂, followed by a methathesis with NaBPh₄. An analogous reaction with [Ir(cod)Cl]₂ gave dark blue [Ir₂(meso-1,3-C₈H₁₀N₂)₄]Cl₂ 2.

The blue color of these complexes is reminescent of a metal-metal interaction. The characteristic $1a_{2u}$ -2 a_{1g} transition (as D_{4h}) due to a metal-metal interaction appears at 561 nm (ϵ/Rh_2 8.6 × 10³) for 1 and at 594 nm (ϵ/Ir_2 5.5 × 10³) for 2 in the electronic spectrum, respectively. We assume that 1 and 2 have a windmill type structure as proposed by Gray and coworkers [1]. Pd(cod)Cl₂ reacted with meso-1,2-diisocyanocyclohexane or dl-1,3-diisocyanocyclohexane to give very pale yellow crystals Pd₂- L_2Cl_4 (3: L = meso-1,2-C₈H₁₀N₂; 4: L = dl-1,3-C₈- $H_{10}N_2$) in quantitative yields. Compound 3 is soluble in CH₂Cl₂ but 4 is insoluble even in polar solvents such as CH₂Cl₂, pyridine and DMSO. 4 reacted readily with PPh₃ in CH₂Cl₂ at room temperature to give a soluble complex 5, $Pd_2(dl-1,3-C_8H_{10}N_2)_2$ - $(PPh_3)_2Cl_4\cdot \frac{1}{2}C_6H_6$. The lowest transition in the

Isocyanide	Method	Yield (%)	Bp(°)/torr (Mp (°C))	IR (KBr) $\nu_{\rm NC}$ cm ⁻¹
meso-1,2-Diisocyanocyclohexane	1	47	126–130/1 (44–47)	2136 ^a
(1R,2R)-Diisocyanocyclohexane	2	7	110-112/2	2142
(1S,2S)-Diisocyanocyclohexane	3	20	100-110/3	2142
meso-1,3-Diisocyanocyclohexane	1	34	126-127/1	2141
dl-1,3-Diisocyanocyclohexane	1	42	116-119/1	2134

TABLE I. Preparation of Diisocyanocyclohexane.

^aNujol.

^{**}Present address: Gunma Institute of Public Health, Maebashi, Gunma, 371, Japan.

electronic spectra of 3 and 5 appeared at 314 nm (ϵ /Pd₂ 1700) and 340 nm (ϵ /Pd₂ 10700), respectively, showing the absence of a metal-metal interaction. The accurate stereochemistry of these complexes remains unknown. The reaction with (1R, 2R)-diisocyanocyclohexane proceeds with a cleavage of chloride bridges to give (1R,2R)-diisocyanocyclohexanedichloro-bis(N,N-dimethylbenzylamine-2C,N)-dipalladium(II) 6. The infrared spectrum shows a band due to a terminal isocyanide group at 2206 cm⁻¹.

These studies demonstrate that diisocyanocyclohexanes prepared here coordinate readily to a variety of metal complexes and would be a useful candidate as ligands for preparation of dinuclear and polynuclear complexes.

Experimental

Infrared spectra and electronic spectra were recorded on Shimazu IR-27G spectrophotometer and Shimazu UV-180 spectrophotometer. Rotations were measured at 23 °C, the length of the tube being 10 dm. The molecular weight was measured in CH_2Cl_2 by a Mechrolab 301A vapor pressure osmometer. The calculated values of elemental analyses are omitted except those of the representative compounds in the case of a similar calculated value.

Preparation of Diformamides

meso-1,3-Diformylcyclohexane: A solution of *meso*-1,3-diaminocyclohexane (20 g, 0.26 mmol) [10] and ethyl formate (110 g, 1.5 mol) was heated at reflux for 4 h. The diformamide (34 g, 77%, M.p. 170–171 °C) was filtered and recrystallized from ethanol. *Anal.* Found: C, 56.38; H, 8.29; N, 16.53%. Calcd. for $C_8H_{14}N_2O_2$: C, 56.45; H, 8.29; N, 16.45%.

By using strictly analogous procedures, the following compounds were prepared. *dl*-1,3-Diformylcyclohexane (78%, M.p. 130–140 °C). *Anal.* Found: C, 56.41; H, 8.40; N, 16.50%. *meso*-1,2-Diformylcyclohexane (73%, M.p. 164–166 °C). Found: C, 56.47; H, 8.42; N, 16.48%.

Preparation of Isocyanides

Method 1

meso-1,3-Diisocyanocyclohexane: A mixture of meso-1,3-diformylcyclohexane (14.9 g, 0.088 mol) and DMF (270 ml) was charged in a three-necked round bottle under nitrogen atmosphere, and a solution of SOCl₂ (26.5 g, 0.22 mol) and DMF (70 ml) was added dropwise to the mixture at -50 °C. The temperature was allowed to rise at -35 °C. Then anhydrous Na₂CO₃ (60 g, 0.58 mol) was added to the mixture. After stirred for 7 h at room temperature, the mixture was diluted with ice-water, extracted with CH₂Cl₂, followed by washing with water and drying over anhydrous Na₂SO₄. Distillation under reduced pressure gave the colorless title compound (4.0 g)*. Anal. Found: C, 71.35; H, 7.59; N, 21.08%. Calcd. for C₈H₁₀N₂: C, 71.61; H, 7.51; N, 20.88%.

Other related compounds were also prepared according to procedures similar to those described above. *dl*-1,3-Diisocyanocyclohexane. *Anal.* Found: C, 70.95; H, 7.40; N, 21.21%. *meso*-1,2-Diisocyanocyclohexane. Found:C, 71.14; H, 7.46; H, 20.99%.

Method 2

(1R,2R)-Diisocyanocyclohexane: A solution of (1R,2R)-diformylcyclohexane (14.3 g, 0.08 mol) and pyridine (48 ml) in CH₂Cl₂ (100 ml) was charged in a three-necked round bottle. POCl₃ (18 g, 0.12 mol) was added to the mixture at 0 °C. The mixture was poured into ice-water, and the organic layer was separated, washed with water and dried over Na₂-SO₄. The title compound was distilled under reduced pressure (0.82 g, $[\alpha]_D^{23}$ -142.6° (c, 0.904, CH₃CN)*. Found: C, 71.59; H, 7.50; N, 21.01%.

Method 3

(1S,2S)-Diisocyanocyclohexane: A mixture of (1S,2S)-diaminocyclohexane (22.5 g, 0.2 mol; $[\alpha]_D^{23}$ +16.3° (c, 2.39, H₂O)), 50% aqueous NaOH (50 ml), CHCl₃ (24 g, 0.2 mol), (PhCH₂)Et₃NCl (0.5 g) in CH₂Cl₂ (100 ml) was kept stirred for 4 h, and then diluted with water. The organic phase is separated, washed with water, and dried over Na₂SO₄. The title compound was distilled under reduced pressure*. $[\alpha]_D^{23}$ +109.5° (c, 0.753, CH₂Cl₂). Found: C, 70.50; H, 7.36; N, 21.45%.

Preparation of Complexes

$[Rh_2(\text{meso-}1,3-C_8H_{10}N_2)_4](BPh_4)_2$ 1

A solution of *meso-*1,3-diisocyanocyclohexane (0.76 g, 5.7 mmol) in CH₂Cl₂ (20 ml) was added to a solution of $[Rh(cod)Cl]_2$ (0.58 g, 1.2 mmol) in CH₂Cl₂ (30 ml). The chloride salt was converted to a tetraphenylborate salt by a methathesis with NaBPh₄ in MeOH**. M.p. > 300 °C (dec.). Anal.

^{*}In order to minimize resinification of the diisocyanide, distillation should be done as rapid as possible.

^{**}The insoluble compound in MeOH may be a polymer, $[Ir(C_8H_{10}N_2)_2Cl]_n$.

Found: C, 69.04; H, 5.84; N, 8.09%. Calcd. for C₈₀-H₈₀N₈B₂Rh₂: C, 69.58; H, 5.84; N, 8.11%. IR (KBr): 2166 cm⁻¹ (N=C).

$[Ir_2(\text{meso-}1, 3-C_8H_{10}N_2)_4]Cl_2 2$

A CH₂Cl₂ solution (15 ml) of *meso*-1,3-diisocyanocyclohexane (0.17 g, 1.3 mmol) was added to a solution of $[Ir(cod)Cl]_2$ (0.13 g, 0.23 mmol) in CH₂Cl₂ (40 ml). A dark blue precipitate (0.21 g, 89%) was filtered. The precipitate was washed with MeOH. 2a (0.13 g) [12]. M.p. > 300 °C. IR (KBr): 2168 cm⁻¹ (N=C). *Anal.* Found: C, 36.84; H, 4.47; N, 10.93%. Calcd. for C₃₂H₄₄N₈O₂Cl₂Ir₂: C, 36.39; H, 4.58; N, 10.61%. A mixture of CH₂Cl₂ and hexane (1:1) was added to a methanol solution to give blue precipitate 2b (0.08 g). M.p. > 300 °C. IR (KBr): 2167 cm⁻¹ (N=C). Found: C, 37.00; H, 4.33; N, 10.88%.

$Pd_2(meso-1, 2-C_8H_{10}N_2)_2Cl_4 3$

To a solution of Pd(cod)₂Cl₂ (0.12 g, 0.42 mmol) in CH₂Cl₂ (15 ml) was added a solution of *meso*-1,2-diisocyanocyclohexane (0.065 g, 0.43 mmol) in CH₂Cl₂ (5 ml) at room temperature. After 1 h, removal of the solvent gave the crude compound 3 (0.125 g, 96%). A crystallization of the residue from CH₂Cl₂-hexane gave very pale yellow compound 3 (0.065 g). M.p. 276–278 °C (dec.). IR (KBr): 2242 cm⁻¹ (N=C). M. wt.: 635 (623). Anal. Found: C, 31.25; H, 3.34; N, 8.86%. Calcd. for C₁₆-H₂₀N₄Cl₄Pd₂: C, 30.90; H, 3.24; H, 9.01%. By an analogous procedure, Pd₂(dl-1,3-C₈H₁₀N₂)₂Cl₄ 4 (M.p. > 300 °C (dec.)) was obtained quantitatively. IR (KBr): 2236 cm⁻¹ (N=C). Found: C, 31.26; H, 3.49; N, 9.13%.

$(C_9H_{12}NClPd)_2((1R,2R)-1,2-C_8H_{10}N_2) 6$

To a solution of di- μ -chlorobis(N,N-dimethylbenzylamine-2C,N)dipalladium (0.11 g, 0.2 mmol) in CH₂Cl₂ (15 ml) was added a solution of (1R, 2R)-diisocyanocyclohexane (0.028 g, 0.21 mmol) in CH₂Cl₂ (5 ml) at room temperature. After 1 h, white crystalline solid 6 (0.023 g) was obtained from CH₂Cl₂-hexane. Removal of the solvent from the mother liquor gave 6 (0.085 g). Yield: 79%. M.p. 244-246 °C (dec.). IR (KBr): 2206 cm⁻¹ (N=C). NMR (CDCl₃): δ 1.64 (c, C₆H₈), 2.81 (s, N-CH₃), 3.95 (s, N-CH₂), 4.28 (b, CH), 7.04 (aromatic protons) ppm. *Anal.* Found: C, 46.10; H, 5.00; N, 7.97%. Calcd. for C₂₆H₃₄N₄Cl₂Pd₂: C, 45.50; H, 4.99; N, 8.16%.

Reaction of 4 with PPh₃

A mixture of 4 (0.065 g, 0.10 mmol) and PPh₃ (0.11 g, 0.42 mmol) in CH₂Cl₂ (5 ml) was stirred at room temperature. After 1 h, benzene was added to the mixture. The yellow solid was filtered and washed with benzene (0.098 g, 77%, M.p. 214–220 °C (dec.)). IR (KBr): 2228 cm⁻¹ (N=C). Anal. Found: C, 56.77; H, 4.86; N, 4.69%. Calcd. for C₅₈H₅₆N₄Cl₄P₂Pd₂: C, 56.84; H, 4.61; N, 4.57%.

References

- N. S. Lewis, K. R. Mann, J. G. Gordon II and H. B. Gray, J. Am. Chem. Soc., 98, 7461 (1976).
 K. R. Mann, N. S. Lewis, V. M. Miskowski, D. K. Erwin,
- 2 K. R. Mann, N. S. Lewis, V. M. Miskowski, D. K. Erwin, G. S. Hammond and H. B. Gray, J. Am. Chem. Soc., 99, 5525 (1977).
- 3 V. M. Miskowski, I. S. Sigal, K. R. Mann, H. B. Gray, S. J. Milder, G. S. Hammond and P. R. Ryason, J. Am. Chem. Soc., 101, 4383 (1979).
- 4 G. L. Geoffroy, M. G. Bradley and M. E. Keeney, *Inorg. Chem.*, 17, 777 (1978).
- 5 K. Kawakami, M. Okajima and T. Tanaka, Bull. Chem. Soc. Jpn., 51, 2327 (1978).
- 6 P. V. Yaneff and J. Powell, J. Organometal. Chem., 179, 101 (1979).
- 7 G. E. Niznik, W. H. Morrison, III and H. M. Walborsky, Org. Synth., 51, 31 (1971).
- 8 I. Ugi, R. Meyer and M. Lipinski, Org. Synth., 41, 13 (1961).
- 9 W. P. Weber, G. W. Gokel and I. Ugi, Angew. Chem. Int. Ed., 11, 530 (1972).
- 10 F. R. Hewgill and P. R. Jefferies, J. Chem. Soc., 805 (1956).