The Reaction of Trimethyltin Hydroxide with Metal-Coordinated PCl₃: Formation of a Tris(trimethylstannyl)phosphite Complex

W.-W. DU MONT and M. GRENZ

Institut für Anorganische und Analytische Chemie der Universität Berlin, D 1000 Berlin 12, F.R.G.

Received October 28, 1980

In previous papers [1] we reported the synthesis of functionally substituted tin complexes by substitution reactions at stannous chloride complexes of pentacarbonyl chromium, molybdenum and tungsten. Recently, trimethyltin hydroxide gave the desired Cl/OH exchange providing a suitable way of preparation for metal complexes of stannous hydroxide [2]. The corresponding reaction of W(CO)₅GeCl₂-THF with trimethyltin hydroxide gave not only Cl/OH exchange but also an esterification leading to (W)-Ge-O-SnMe₃ moieties [3]. From this we were interested whether the corresponding reaction of Me₃SnOH with transition metal complexes of PCl_3 would be a new access to $L_nM-P(OH)_3$ complexes [4], or M-P-O-SnMe₃ moieties would be formed. In the case of a pentacarbonyl tungsten complex ³¹P NMR shifts and couplings like ¹J(PW) and ²J(SnP) should allow a clear distinction between different cases of (CO)₅W-P(OH)_n- $(OSnMe_3)_{3-n}$.

The pentacarbonyl tungsten phosphorustrichloride complex was mixed with three equivalents of trimethyltin hydroxide and stirred overnight in toluene. After removal of the solvent under reduced pressure the residue was heated to 50 °C at 1 mbar (attempted sublimation of Me₃SnCl). This led to a crude product of W(CO)₅P(OSnMe₃)₃ (I) that still contained about 10% of another complex with the structural moiety W(CO)₅P(OSnMe₃)₂O- (δ ³¹P

TABLE I. Properties of W(CO)₅P(OSnMe₃)₃ (1)*.

Analysis: C found 18.5 (calcd. 18.75); H found 3.0 (calc. 3.03)% ν (CO) Infrared: 2050, 1964, 1904 cm⁻¹ Raman: 2057, 1956, 1901 cm⁻¹ ¹H NMR δ (¹H) - 0.2 ppm, ²J(¹H¹¹⁹Sn) 59.2 Hz ³¹P NMR δ (³¹P) 98 ppm; ¹J(¹⁸³W³¹P) 350.3 Hz; ²J(¹¹⁹Sn³¹P) 103.8 Hz

I was further purified by sublimation at 90 °C/0.1 mbar to give slightly yellowish crystals that gave correct analytical data for $W(CO)_{5}P(OSnMe_{3})_{3}$. The structure of the new tris(trimethylstannyl)phosphite complex was unambiguously confirmed by ³¹P NMR spectroscopy. The spectrum (Table I) consists of a main singlet at 98 ppm with tungsten satellites (doublet ¹J(¹⁸³W³¹P) 350.3 Hz, rather small for a phosphite complex) and pairs of tin satellites (doublets ²J(¹¹⁷, ¹¹⁹Sn³¹P) with the correct integral fitting to a P(OSn)₃ structure). In a high resolution ³¹P NMR spectrum we detect-

In a high resolution ³¹P NMR spectrum we detected also further 'tin satellites' due to the outer branches of ³¹P NMR triplets arising from ²J(PSn) of molecules containing two NMR-active tin nuclei (two ¹¹⁹Sn: ²J(PSn) 103.9 Hz, two ¹¹⁷Sn: ²J(PSn) 99.3 Hz, one ¹¹⁹Sn and one ¹¹⁷Sn: double relative intensity, satellite peaks 101.6 Hz from the ³¹P main signal).

The carbonyl stretching vibration pattern of I (Table I) is consistent with a rather undistorted local C_{4v} symmetry of $W(CO)_5$ —P. I did not give a sharp melting point and a sample heated to the melt (150 °C) showed signals of decomposition products in the Raman spectrum (2015 and 1999 cm⁻¹). The esterification reaction with Me₃SnOH leading to I and corresponding germylene complexes as well the hydrolytic behaviour of such compounds are under investigation.

Acknowledgement

We thank Mr. M. Dettlaff at our instite for recording the ³¹P NMR spectra, and the Deutsche Forschungsgemeinschaft, Bonn-Bad Godesberg for financial support.

¹⁰⁹ ppm, ${}^{1}J({}^{18}{}^{3}W{}^{31}P)$ 360 Hz, ${}^{2}J({}^{119}Sn{}^{31}P)$ 110 Hz, integrals of the ${}^{117,119}Sn$ satellites consistent with a P(OSn)₂ case).

^{*1}R: Perkin-Elmer 457, CsI/nujol; RAMAN: Cary 82; ¹H-NMR: VARIAN EM 360; ³¹P-NMR: BRUKER WP 80 (FT). Chemical shifts against TMS (¹H) and 85% H₃PO₄ (³¹P).

References

1 W.-W. du Mont and B. Neudert, Chem. Ber., 111, 2267 (1978); W.-W. du Mont, Z. Anorg. Allg. Chem., 450, 57 (1979).

- 2 W.-W. du Mont and B. Neudert, Angew. Chem., 92, 561 (1980); idem, Angew. Chem. Int. Ed. Engl., 19, 553
- (1980), idem, Angew. Chem. Int. Ed. Engl., 19, 555 (1980).
 3 W.-W. du Mont and G. Rudolph, unpublished results.
 4 H. Nöth, H. Reith and V. Thorn, Z. Anorg. Allg. Chem., 458, 219 (1979).