Synthesis and Characterization of $Pt(OSNH)_2(S_2N_2-H_2)$, (disulfur diimide) bis(thionyl imide-*O*)platinum-(II)

A. A. BHATTACHARYYA and A. G. TURNER*

Department of Chemistry, University of Detroit, Detroit, Mich. 48221, USA

Received September 18, 1980

We recently reported the synthesis and X-ray crystal and molecular structure of the first thionyl imide metal complex, *cis*-bis(thionyl imide-O)bis(triphenylphosphine)platinum(II), *cis*-Pt(PPh₃)₂(OSNH)₂ [1]. The compound was prepared by the reaction of tetrakis(triphenylphosphine)platinum(0), Pt(PPh₃)₄, with tetrasulfur tetraimide, S₄N₄H₄, in acetone at room temperature. We now report another thionyl imide complex, (disulfur diimide)bis(thionyl imide-O)platinum(II), Pt(OSNH)₂(S₂N₂H₂), which is prepared by the reaction of an aqueous solution of potassium tetrachloroplatinate(II), K₂PtCl₄, with S₄N₄H₄ in acetone.

Experimental

 K_2PtCl_4 was prepared from metallic platinum [2] $S_4N_4H_4$ was prepared by the reduction of tetrasulfur tetranitride, S_4N_4 , with $SnCl_2 \cdot 2H_2O$ [3]. S_4N_4 was prepared by using a literature method [4]. The absorption spectra in DMF at ambient temperature were measured using a Cary Model 14 Spectrophotometer. The IR spectra were obtained using a Perkin-Elmer Model 457 Spectrophotometer and the NMR spectra were recorded using a Varian T 60 Spectrometer.

The procedure for the preparation of $Pt(OSNH)_2$ -(S₂N₂H₂) is as follows:

An aqueous solution of K_2PtCl_4 (0.41 g, 1.0 mmol) was slowly added to a suspension of $S_4N_4H_4$ (0.20 g, 1.1 mmol) in acetone (10 ml) while stirring. Within five min. the product was precipitated as a red-brown solid. The mixture was cooled in a refrigerator and filtered, washed thoroughly first with water and then with acetone and dried under vacuum over CaCl₂. Yield 0.39 g (95% based on K_2PtCl_4), Mp 133–141 °C (dec.). Anal. Calcd for $H_4N_4O_2S_4Pt$: S, 30.87; N, 13.49, H, 0.96. Found: S, 31.08; N, 13.28; H, 1.04%.

Results and Discussion

The absorption spectrum of $Pt(OSNH)_2(S_2N_2H_2)$ in DMF shows three absorption bands at 450 nm ($\epsilon =$ 939.0 M^{-1} cm⁻¹), 310 nm ($\epsilon =$ 3883.5 M^{-1} cm⁻¹), and 300 nm ($\epsilon =$ 3982.9 M^{-1} cm⁻¹) possibly due to electronic transitions ${}^{1}A_{1g} \rightarrow {}^{1}A_{2g}$, ${}^{1}A_{1g} \rightarrow {}^{1}B_{1g}$, and ${}^{1}A_{1g} \rightarrow {}^{1}E_{g}$, respectively. These three transitions are typical of square-planar d⁸ configurations [2].

TABLE I. IR Spectrum of (disulfur diimide)bis(thionyl imide-O)platinum(II) in KBr Phase. Absorption Maxima^a in cm⁻¹.

3300 (br)	420 (m)	
1040 (m)	402 (w)	
900 (m)	390 (m)	
870 (s)	382 (w)	
590 (m, br)	370 (m)	
510 (w)	360 (vw)	
470 (w)		

^abr, broad; s, strong; m, medium; w, weak; and vw, very weak.

The infrared spectrum of the compound is shown in Table I below. The ν_{N-H} appears [2] at 3300 cm^{-1} . The S = O stretch occurs [5] at 1040 cm^{-1} indicating the presence of thionyl imide group (OSNH). The previously reported thionyl imide complex, Pt(PPh₃)₂(OSNH)₂, also had an absorption in that region [1]. Binary sulfur-nitrogen compounds are known to absorb [6] in the region 900-500 cm^{-1} ; while this compound shows absorption bands at 900, 870, 590, and 510 cm⁻¹. The OSNH group is known to coordinate to Pt(II) by the oxygen atom as observed in cis-Pt(PPh₃)₂(OSNH)₂. A band at 420 cm⁻¹ may be assigned to ν_{Pt-O} [7]. In addition to the Pt-O stretch, this material exhibits a band at 360 cm⁻¹ indicating Pt-S bonding [8]. The ν_{Pt-N} is also observed [2] at 470 cm^{-1} . The presence of both ν_{Pt-S} and ν_{Pt-N} in this complex indicate that the disulfur diimide ligand is coordinated to the metal by both sulfur and nitrogen atoms (-S-NH-S-NH-).

The proton NMR spectrum of Pt(OSNH)₂($S_2N_2H_2$) indicates two singlets at 3.45 ppm and 0.75 ppm with intensity ratio of 1:1. This compound has two thionyl imide protons and two disulfur diimide protons. Since the O = S = NH protons may be more shielded than the -S-NH-S-NH- protons, the peaks at δ 3.45 (S, 1H) and δ 0.75 (S, 1H) may be assigned to the disulfur diimide and thionyl imide protons, respectively.

The ligand $S_2N_2H_2^{2-}$ may have been resulted due to simple fragmentation of the $S_4N_4H_4$ ring. The presence of OSNH is not surprising in this complex.

^{*}Author to whom all correspondence should be addressed.

Acetone solutions of $S_4N_4H_4$ are known to introduce the OSNH group in the other platinum(II) complex, Pt(PPh₃)₂(OSNH)₂. A proposed structure is shown below:

References

 (a) A. A. Bhattacharyya, A. G. Turner, E. M. Holt and N. W. Alcock, *Inorg. Chim. Acta*, 44, L185 (1980). (b) A. A. Bhattacharyya, J. A. McLean, Jr. and A. G. Turner, *Inorg. Chim. Acta*, 34, L199 (1979).

- 2 S. E. Livingston and 'Comprehensive Inorganic Chemistry', J. C. Bailar, Jr., et al. Ed., vol. 3, Pergamon Press, Oxford, pp. 1330-1370 (1973).
- 3 G. Brauer, 'Handbook of Preparative Inorganic Chemistry', vol. 1, Academic Press, New York, N. Y., pp. 406-408 (1963).
- 4 M. Villena-Blanco and W. L. Jolly, in 'Inorganic Synthesis', vol. 9, S. Y. Tyree Ed., McGraw-Hill, New York, N. Y., pp. 98-102 (1961).
- 5 E. Fluck and M. Becke-Goehring, Z. Anorg. Allgem. Chem., 292, 229 (1957).
- 6 E. R. Lippincott and M. C. Tobin, J. Chem. Phys., 21, 1559 (1953).
- 7 L. J. Bellamy, 'The Infrared Spectra of Complex Molecules', Chapman and Hall, London (1975).
- 8 K. Nakamoto, 'Infrared Spectra of Inorganic and Coordination Compounds', Wiley-Interscience, New York, N. Y. (1970).