coworkers have recently reported theoretical calculations on the $1,6-C_2B_8H_{10}$ and predicted the apical C(1)-proton to be slightly more acidic than the equatorial C(6)-proton [7]. Indeed this was the observed behavior as Hawthorne has previously reported the formation of the C(1) lithiated product to be favored by a factor of two [2]. Our results would indicate a reversal in this selectivity for the 1,2-dicarbadecaborane with the equatorial proton being significantly more acidic. This warrants further theoretical work on this isomer of $C_2B_8H_{10}$. Furthermore, our successful metallation of this carborane should facilitate functionalization of it.

Experimental

All reactions were carried out under inert atmospheric conditions. Diethyl ether was distilled from sodium-benzophenone. 1,2-dicarbadecaborane-(10) was prepared by literature methods [4].

Proton-decoupled ¹¹B NMR spectra wre obtained using the JEOL FX90Q FT spectrometer. CDCl₃ was used as the solvent and all shifts are relative to external $BF_3 \cdot Et_2O$.

Reaction of $1, 2-C_2B_8H_{10}$ with 2 n-BuLi

Freshly sublimed $1,2-C_2 B_8 H_{10}$ (106 mg, 0.87 mmol) was dissolved in 10 ml of ether and chilled to -20 °C. Two equivalents of BuLi was added via syringe and the solution allowed to warm slowly to 10 °C whereupon a white precipitate formed. After cooling again to -20 °C, excess methyl iodide was added and the solution warmed to room temperature. Removal of solvent and sublimation of the

residue at 80–90 °C using a mechanical pump vacuum gave 45 mg, 0.3 mmol of white crystalline 1,2-Me₂C₂-B₈H₈.

Reaction of $1,2-C_2B_8H_{10}$ with n-BuLi

A similar procedure was used to produce the monolithiated product and methyl iodide used to give the methylated products. The mono- and dimethylated carboranes can be separated by GLC. The composition of the products was analyzed by spectral means.

Acknowledgement

We are grateful to the donors of the Petroleum Research Fund, administered by the American Chemical Society, and Research Corporation for financial support.

References

- R. N.Grimes, 'Carboranes', Academic Press, New York 1970.
- 2 P. M. Garrett, J. C. Smart and M. F. Hawthorne, J. Am. Chem. Soc., 91, 4707 (1969).
- 3 L. I. Zakharkin, V. N. Kalinin and E. G. Rys, J. Gen. Chem. Russ., 43, 848 (1973).
- 4 B. Stibr, J. Plesek and S. Hermanek, Coll. Czech. Chem. Commun., 38, 338 (1973).
- 5 R. R. Rietz, R. Schaeffer and E. Walter, J. Organometal. Chem., 63, 1 (1973).
- 6 P. M. Garrett, J. D. Smart, G. S. Ditta and M. F. Hawthorne, *Inorg. Chem.*, 8, 1907 (1969).
- 7 D. A. Dixon, D. A. Kleier, T. A. Halgren, J. H. Hall and W. N. Lipscomb, J. Am. Chem. Soc., 99, 6226 (1977).

Erratum to Volume 44

Inorganica Chimica Acta, 44 (1980) L291-L294

Spin Spin Interactions in Polymeric Copper(II) Complexes: $Cu(II)(Piperidylcarbamate)_2(Cu(I)X)_4$ (X = Cl, Br)

P. D. W. BOYD, J. HOPE and R. MARTIN (Canberra, A.C.T., Australia)

Page L292, Figures 2(a) and 2(b) should be interchanged but the legends should remain as they are.