Complexes of Mercury(II) Halides with N-methyl O-ethylthiocarbamate

G. FARAGLIA, L. SINDELLARI and B. ZARLI

Istituto di Chimica Generale dell'Università, via Loredan 4, 35100 Padua, Italy

Received January 8, 1981

Mercury(II) halides have been reported to give complexes of various stoichiometries with thiocarbonylic ligands. Whereas thioureas form complexes having metal to ligand ratios from 1:1 to 1:4 [1-5], with monothiobiureth [6] and thioamides [7-9] 1:2 adducts have been generally obtained. In the complex (where TSC = thiosemicarbazide. $Hg(TSC)_2Cl_2$ $H_2N-CS-NH-NH_2$) the metal is in the center of a distorted tetrahedron formed by two chlorine and two sulfur atoms [10]; however in Hg(TSC)Cl₂ thiosemicarbazide acts as a bidentate ligand through the sulfur atom and the nitrogen of the aminic group [11]. A distorted tetrahedral configuration has been found also for $Hg(TC)_2Cl_2$ (where TC = ethylthiocarbamate, H₂N-CS-OEt) [12].

As a part of a study on the complexes of O-ethylthiocarbamates with transition metals [13, 14], this paper gives preliminary informations on the adducts obtained by raction of HgX₂ (X = Cl, Br, I) with the title ligand (MTC = CH₃NH-CS-OEt).

Experimental

Mercury halides were R. G. commercial products; MTC was prepared as in ref. [14]. Instruments were as in refs. [13, 14]. In taking the ¹H NMR spectra of deuterated acetone solutions, benzene was used as an internal standard, owing to the immediate reaction of tetramethylsilane with the complexes.

Preparation of the Complexes

 $Hg(MTC)_2X_2$ (X = Cl, Br, I).

The salt was dissolved in a benzene solution of MTC (molar ratio from 1:3 to 1:4) and the complex isolated by addition of n-pentane. All the compounds are white and soluble in benzene and acetone. $Hg(MTC)_2I_2$ releases ligand molecules giving pale-yellow solutions.

HgCl₂•MTC

Form (A). A suspension of HgCl₂ (1.3 mmol) in a benzene solution (10 ml) of MTC (1.3 mmol) was heated up to 50 °C. The undissolved residue (110 mg M.p. 131-6 °C; C = 3.7; H = 0.8; N = 1.2) was separated, by cooling the filtrate gave the white flocculent

solid. By adding n-pentane to the residual solutions small fractions of $Hg(MTC)_2Cl_2$ were obtained. Form B. The compound precipitated by addition of MTC (1.5 mmol) to an acetone solution (2 ml) of $HgCl_2$ (1.5 mmol). It was filtered and washed with an acetone-pentane solution. By adding pentane to the filtrate a mixture of the two forms, richer in (A), was obtained. Either in solution or more slowly in the solid state, the form (A) changes to the form (B). The solids (A) and (B) have quite different IR spectra below 900 cm⁻¹.

HgBr₂·MTC

By adding pentane to an acetone solution of $HgBr_2$ and MTC (molar ratio 1:1) a small amount of an oily pink product precipitated, which was discarded. The progressive addition of several small fractions of pentane allowed to separate first the form (A) (200 mg) and then the form (B) (220 mg).

$HgI_2 \cdot MTC$

HgI₂ (1.3 mmol) and MTC (1.3 mmol) were dissolved in acetone (3 ml). By adding pentane an oily product was obtained which gave an orange solid (form A). On standing the solution gave pale-green crystals (form B). The IR spectra of (A) and (B) are identical. The orange form turns to green if heated at about 50 $^{\circ}$ C.

Results and Discussion

The IR spectra of the complexes indicate that the ligand coordinates through the sulfur atom. In fact the band assignable as mainly $\nu(C-N)$ observed at 1535 cm^{-1} for the pure MTC [14], shifts towards higher frequencies in the complexes. In the 1;2 adducts the position of ν (N-H) and ν (C-N) depends on the halogen, as for ν (C-S) found at 712 cm⁻¹ in the chloro-, at 719 cm⁻¹ in the bromo- and at 722 cm^{-1} in the iodo-derivative. A medium band, absent in the palladium complexes with MTC [14], has been observed in Hg(MTC)₂X₂ at 307 cm⁻¹ (X = Cl), 300 cm^{-1} (X = Br), 293 cm^{-1} (X = I), and tentatively assigned as ν (Hg–S). In the Hg–Hal stretching region the 1:2 adducts exhibit a symmetrically split band suggesting a tetrahedral arrangement analogous to that of Hg(TC)₂Cl₂ [12]. The 1:1 chloro- and bromocomplexes have been isolated in two forms with different IR spectra. The form (A) of HgCl₂·MTC, whose $\nu(Hg-Cl)$ absorption is observed around 250 cm^{-1} , slowly changes either in solid or in solution to the form (B), in which ν (Hg–Cl) falls around 230 cm^{-1} . The spectral behaviour, similar to that of the two bromo- derivatives, strongly suggest a polymeric halide-bridged structure in the forms (B).

Compound	M.p. °C	C%	H%	N%	ν(N-H)	ν(C-N)	v(Hg-Hal)
Hg(MTC) ₂ Cl ₂	97-8	19.0 (18.8)	3.5 (3.5)	5.5 (5.5)	3210m br, 3110mw	1580s	252s 238s
Hg(MTC) ₂ Br ₂	94–6	15.9 (16.0)	3.0 (3.0)	4.8 (4.7)	3230m br, 3105w	1570s	{174m 168m
Hg(MTC) ₂ I ₂	58	13.6 (13.8)	2.5 (2.6)	4.0 (4.0)	3260m br, 3100w	1555s	143m 133m
HgCl ₂ ·MTC (A)	94-5	12.4	2.4	3.8	3220m br, 3180sh, 3130sh, 3080vw	1608s, 1582s	250s, 245sh
HgCl ₂ ·MTC (B)	117	12.4 (12.3)	2.4 (2.3)	3.6 (3.6)	3255m br, 3140sh	1582s	230br
HgBr ₂ ·MTC (A)	69-71	9.7	1.8	2.8	3240m, 3180sh, 3135sh, 3075w	1602s, 1575s	221m, 175m
HgBr ₂ ·MTC (B)	73-6	10.0 (10.0)	1.9 (1.9)	2.9 (2.9)	3220w, 3158vw	1590s	211m
HgI2·MTC (A)	65-7	8.1	1.5	2.4	3300shw, 3270w	1565s	152m br, 138sh
HgI ₂ •MTC (B)	67-8	8.4 (8.4)	1.7 (1.6)	2.4 (2.4)	3300shw, 3270w	1565s	152m br, 138sh

TABLE I. Analytical Data (the calculated values are in parentheses) and Infrared Bands.

By osmometric data Hg(MTC)₂Cl₂ is slightly dissociated in benzene, where the van't Hoff i factor is 1.08 for a 10^{-2} M solution. At the same concentration i is 1.24 for Hg(MTC)₂Br₂ and 1.65 for Hg(MTC)₂I₂. The ¹H NMR spectrum of a 5.10^{-2} M benzene solution of Hg(MTC)₂Cl₂ shows one signal for each group of proton; the O-CH2-CH3 triplet is at 0.70 ppm, the O-CH2-CH3 quartet at 3.91 ppm and the N-CH₃ signal at 2.17 ppm. Whereas in the $Pd(MTC)_2X_2$ (X = Cl, Br, I, SCN) complexes the N-CH₃ resonances appear as sharp doublets, in the mercury complexes these signals are broad indicating some tendency to release ligand. The spectra of 5.10^{-2} M benzene solutions of the 1:2 bromo- and iodo- adducts have the resonances of the coordinated ligand at the same values of the chloro- complex, along with the signals of the free ligand at 4.4 ppm (O-CH2-CH3), 1.03 ppm (O-CH2-CH3) and 2.60 ppm (N-CH₃). The amount of free ligand, low in the bromo- complex solution, is about 20% for the iodocomplex. Therefore the osmometric and NMR data support the equilibrium $Hg(MTC)_2X_2 \rightleftharpoons HgX_2$. MTC + MTC in bezene solutions.

In acetone the not-electrolytes 1:2 adducts release ligand molecules in a larger extent than in benzene; *i.e.* for Hg(MTC)₂Cl₂ (10⁻² M) $i \simeq 2$. The 1:1 complexes are almost insoluble in benzene, in acetone the polymeric structure is broken. For the forms (A) and (B) of HgCl₂·MTC, not-conductor in this solvent, the osmometric data seem to be in accordance with the monomer. The ¹H NMR spectra in acetone of Hg- $(MTC)_2X_2$ (X = Cl, Br, I), at 0.1 M concentration, show a broad N-CH₃ signal at about 3 ppm and a

weak resonance at 3.10 ppm. The O-CH₂-CH₃ double resonances confirm the presence of either coordinated MTC (CH₃ triplet at 1.40 ppm and CH₂ quartet at 4.63 ppm) or free MTC (1.29 ppm and 4.48 ppm respectively), whose amount is about 50% in the solution of $Hg(MTC)_2I_2$. However the spectra of the 1:1 adducts in the same solvent could suggest the presence of only coordinated MTC, but further study seems to be required in variable temperature conditions.

Acknowledgements

The authors thank Mr. Giampaolo Biasioli and Mr. Adriano Berton for the elemental analyses. This work was supported by the Istituto di Chimica e Tecnologia dei Radioelementi del C.N.R.-Padua.

References

- 1 G. O. Marcotrigiano, G. Peyronel and R. Battistuzzi, Inorg. Chim. Acta, 9, 5 (1974). 2 G. Marcotrigiano, G. Peyronel and R. Battistuzzi, J.
- Inorg. Nucl. Chem., 37, 1675 (1975).
- 3 L. P. Battaglia, A. Bonamartini Corradi, G. Marcotrigiano and G. C. Pellacani, J. Chem. Soc. Dalton, 1089 (1979).
- 4 P. D. Brotherton, P. C. Healy, C. L. Raston and A. H. White, J. Chem. Soc. Dalton, 334 (1973).
- 5 P. D. Brotherton and A. H. White, J. Chem. Soc. Dalton, 2696 (1973); Ibid., 2698 (1973).
- 6 K. Geetharani and D. N. Sathyanarayana, Inorg. Nucl. Chem. Letters, 13, 247 (1977).
- 7 A. J. Aarts, H. O. Desseyn and M. A. Herman, Bull. Soc. Chim. Belg., 86, 345 (1977).

- 8 A. J. Aarts, H. O. Desseyn and M. A. Herman, Bull. Soc. Chim. Belg., 86, 581 (1977).
- 9 A. J. Aarts, H. O. Desseyn and M. A. Herman, Bull. Soc. *Chim. Belg.*, 87, 155 (1978). 10 C. Chieh, *Can. J. Chem.*, 55, 1583 (1977).
- 11 C. Chieh and D. H. Cowell, Can. J. Chem., 55, 3898 (1977).
- 12 G. Bandoli, D. A. Clemente, L. Sindellari and E. Tondello,
- G. Bandon, D. A. Clemente, L. Sindenari and E. Tohdeno, J. Chem. Soc. Dalton, 449 (1975).
 L. Sindellari, G. Faraglia, B. Zarli, P. Cavoli, A. Furlani and V. Scarcia, Inorg. Chim. Acta, 46, 57 (1980), and references therein.
- 14 G. Faraglia, L. Sindellari and B. Zarli, Inorg. Chim. Acta, (1981) and refs. therein, in press.