Metal- vs. Base-catalysis in the Reactions of β -Ketoamides with Cyanogen: Synthesis of Multifunctional Olefins and Related Heterocycles

M. BASATO, R. CAMPOSTRINI, B. CORAIN*

Centro di Studio sulla Stabilità e Reattività dei Composti di Coordinazione, C.N.R., c/o Istituto di Chimica Analitica, Via Marzolo 1, 35100 Padua, Italy

F. D'ANGELI, A. C. VERONESE*

Laboratorio di Chimica Organica, Facoltà di Farmacia, Via Scandiana 21, 44100 Ferrara, Italy

and G. VALLE

Centro di Studio sui Biopolimeri, C.N.R., c/o Istituto di Chimica Organica, Via Marzolo 1, 35100 Padua, Italy

Received September 13, 1984

*Authors to whom correspondence should be addressed.

It is known that acetylacetone can be effectively added to various electrophiles in the presence of catalytic amounts of the $[M(acac)_n]$ complexes, Scheme 1 [1, 2].

$$\begin{split} XY &= R-N=C=0; \ COOCH_3-C=C-COOCH_3; \ COOCH_3-N=N-COOCH_3; \ CCl_3-C=N; \ CCl_3-C(O)H. \end{split}$$

Scheme 1

This synthetic procedure was recently extended to the addition of acetylacetone, ethylacetoacetate, and dimethylmalonate to cyanogen [3-5] and to typical Michael acceptors [6].

TABLE I. Addition of Cyanogen to β -Ketoamides Catalyzed by 1 mol % [M(acac)₂] (M = Cu, Zn) or EtO⁻.^a

,R	
CH ₃ COCH ₂ CON	+ $C_2 N_2 \rightarrow 1$ or 2
R	

R'	R	Catalyst	(Solvent) ^b	Product	Yield	Time (h) ^c
Н	Н	[Zn(acac) ₂]	(A)	1	91	72
н	CH ₂ C ₆ H ₅	[Cu(acac) ₂]	(B)	1	85	168
Н	CH ₂ C ₆ H ₅	[Zn(acac) ₂]	(A)	1	92	72
Н	CH ₂ C ₆ H ₅	EtO ⁻	(C)	2	54	48
Н	p-Cl-C ₆ H ₄	$[Zn(acac)_2]$	(D)	1	53	24
Н	p-Cl-C ₆ H ₄	$[Zn(acac)_2]$	(A)	1	94	24
Н	p-Cl-C ₆ H ₄	[Cu(acac) ₂]	(B)	1	87	168
Н	p-Cl-C ₆ H ₄	EtO ⁻	(C)	2	70	72
н	Ph	$[Zn(acac)_2]$	(A)	1	96	72
н	Ph	[Cu(acac) ₂]	(B)	1	81	168
Н	Ph	EtO ⁻	(C)	2	48	124
Н	CH3	$[Zn(acac)_2]$	(A)	1	76	96
н	CH3	[Cu(acac) ₂]	(B)	1	80	144
н	CH ₃	EtO ⁻	(C)	2	16	24
$-CH_2-CH_2-CH_2-CH_2-$		$[Zn(acac)_2]$	(B)	1	94	48
-CH ₂ -CH ₂ -CH ₂ -CH ₂ -		$[Cu(acac)_2]$	(B)	1	92	168
CH₃	CH ₂ C ₆ H ₅	[Cu(acac) ₂]	(B)	1	40	48
CH ₃	C ₆ H ₅	$[Cu(acac)_2]$	(B)	1	55	72
CH ₃	CH ₃	[Cu(acac) ₂]	(B)	1	77	72
CH₃	CH3	EtO ⁻	(C)	no addition		72

^aAll products are novel compounds and gave satisfactory elemental analyses. Typical condition: $[C_2N_2] = 0.9 \text{ M}$; [reagent] = 0.5 M; [cat] = $5 \times 10^{-3} \text{ M}$. ethanol, D = dichloromethane. ^bSolvents were of reagent grade and were used as received. A = toluene, B = dichloroethane, C = ^cReaction time at *ca*. 20 °C.

0020-1693/85/\$3.30

© Elsevier Sequoia/Printed in Switzerland

We report here on the addition of various acetoacetamides to C_2N_2 at room temperature, using as catalysts $[Zn(acac)_2]$ or $[Cu(acac)_2]$ in dichloromethane, dichloroethane and toluene or EtO⁻ in ethanol, Table I.

The results obtained indicate that the metal catalyst plays a determinant role in influencing the regioselectivity of the overall reaction towards compounds 1, Scheme 2, whereas a typical 'aspecific' catalyst such as the ethoxyde ion drives the reaction towards compounds 2.

Multifunctional olefins 1 were isolated in the presence of soluble metal catalysts in all cases investigated; they were characterized* by elemental analysis, NMR, IR, UV-Vis and mass spectrometry. When EtO⁻ was employed as the catalyst, compounds 2 were directly obtained from the secondary amides at room temperature. Compounds 1 could be quantitatively converted to compounds 2 when R' = H by refluxing in $C_2H_4Cl_2$ for some hours or by treatment with catalytic amounts of EtO⁻ (1 mol % catalyst) in ethanol at room temperature.

The structures of compounds 2 were determined by single crystal X-ray analysis for $R = p-Cl-C_6H_4$ [7].

The reason for the strict control by the metal center on the selective formation of species 1 lies on the mechanistic proposal depicted in Scheme 3.

ACTIVATION HL = β -ketoamide

Scheme 3

The proposed mechanism is based on the following facts:

(i) [M(acac)_n] complexes are known to undergo substitution reactions [8, 9] such as that depicted in stage 1;

(ii) $[M(\beta\text{-carbonylenolate})_2]$ complexes easily add C_2N_2 to give cyanoimino- β -carbonylenolate complexes [10-12], and we have found that some $[Cu-(\beta\text{-acetoacetamidate})_2]$ complexes react quantitatively with cyanogen to give the corresponding addition-insertion products**.

(iii) The complex [Cu(N-phenylacetoacetamidate $C_2N_2)_2$] effectively catalyzes the addition of N-phenylacetoacetamide to C_2N_2 to give the expected type 1 product.

^{*}All compounds have been isolated as single isomers. The ¹H NMR spectra in DMSO-d₆ show that one isomer is normally predominant in solution and further work is in progress to elucidate the configuration. We report some data for representative compounds of type 1 and 2 ($R = CH_2 - C_6H_5$). 1: IR, 3170, 3270, 3340 (N-H); 2230 ($C \equiv N$); ¹H NMR, 2.00 (COCH₃), 8.77 (NH₂, NH), 4.35 (CH₂, d, J = 6 Hz), 7.32 (C_6H_5); mass spectrum: 243(100) M⁺, 91(87), 43(18). 2: IR, 3200, 3320, 3280 (N-H), 1720 ($C \equiv N$?); ¹H NMR, 2.33 (COCH₃), 4.63 (CH₂), 7.23 (C_6H_5), 9.78 ($\equiv N-H$); mass spectrum: identical to 1 (at 220 °C).

^{**}The complex $[Cu\{(CH_3-C(0)-C(H)-C(0)-N(H)(pCl-C_6H_4)\}_2]$, $[CuL_2]$, is obtained from copper acetate monohydrate and the acetoacetamide in a water/ethanol mixture (10:1) as a green microcrystalline powder (yield 85%). *Anal.* Calcd.: C, 49.55; H, 3.74; N, 5.78. Found: C, 49.82; H, 3.72; N, 5.90. M.p. 215 °C. IR (cm⁻¹): ν_{N-H} amide = 3300(m). The complex reacts with C_2N_2 in $C_2H_4Cl_2$ at ambient temperature to give the cyanoimino yellow-green derivative $[Cu(L \cdot C_2N_2)_2]$ (yield 80%). *Anal.* Calcd.: C, 48.95; H, 3.08; N, 14.27. Found: C, 48.33; H, 3.08; N, 14.01. M.p. >270 °C. IR (cm⁻¹): ν_{N-H} amide = 3320(m); ν_{N-H} imine = 3340(m); $\nu_{C\equiv N}$ = 2230(vw); $\nu_{C=N}$ = 1640(m). IR data are in full agreement [9-12] with the structure of the intermediate at 6 o'clock in Scheme 3.

The metal-controlled chemoselectivity towards the synthesis of compounds 1 is the consequence of the appropriate inability of the catalyst to promote the hydrogen transfer from the amide to the nitrile nitrogen in compounds 1. On the contrary, EtO^- not only catalyzes the addition of acetoacetamides to cyanogen, but is also effective in the catalysis of the cyclo-isomerization $1 \rightarrow 2$.

In conclusion, $[Cu(acac)_2]$ and $[Zn(acac)_2]$ prove quite convenient catalysts for the selective preparation of a group of cyanoenaminediones, which are in fact *thermodynamically unstable* with respect to their pyrrolinic isomers.

Acknowledgement

This work was partially supported by C.N.R., Progetto Finalizzato Chimica Fine e Secondaria.

References

- 1 K. Uehara, Y. Ohashi and M. Tanaka, Bull. Chem. Soc. Jpn., 49, 1447 (1976).
- 2 R. P. Eckberg, J. H. Nelson, J. W. Kenney, P. N. Howells and R. A. Henry, *Inorg. Chem.*, 16, 3128 (1977).
- 3 B. Corain, M. Basato and H.-F. Klein, Angew. Chem., Int. Ed. Engl., 20, 982 (1981).
- 4 B. Corain, M. Basato, E. Mori and G. Valle, *Inorg. Chim.* Acta, 76, L263 (1983).
- 5 M. Basato, B. Corain, A. Marcomini, G. Valle and G. Zanotti, J. Chem. Soc., Perkin Trans., 2, 965 (1984).
- 6 J. H. Nelson, P. N. Howells, G. C. DeLullo and G. L. Landen, J. Org. Chem., 45, 1246 (1980).
- 7 G. Valle, to be published.
- 8 R. C. Mehrotra, R. Bohra and D. P. Gaur, 'Metal β-Diketonates and Allied Derivatives', Academic Press, 1978, p. 48.
- 9 B. Corain, M. Basato, G. Visentin and G. Zanotti, J. Chem. Soc., Dalton Trans., 1217 (1983).
- 10 B. Corain and M. Basato, J. Organomet. Chem., 232, C59-61 (1982).
- 11 B. Corain, M. Basato, A. Del Zotto and G. Zanotti, Inorg. Chem., 22, 2744 (1983).
- 12 B. Corain, M. Basato, C. Ballotta and M. Ahmed, Inorg. Chim. Acta, 87, 105 (1984).