Metal- vs. Base-catalysis in the Reactions of β -Ketoamides with Cyanogen: Synthesis of Multifunctional **Olefins and Related Heterocycles**

M. BASATO, R. CAMPOSTRINI, B. CORAIN*

Centro di Studio sulla Stabilità e Reattività dei Composti di Coordinazione, C.N.R., c/o Istituto di Chimica Analitica, Via Marzolo 1, 35100 Padua, Italy

F. D'ANGELI, A. C. VERONESE^{*}

Laboratorio di Chimica Organica, Facoltà di Farmacia, Via $\overline{}$

and G. VALLE

Centro di Studio sui Biopolimeri, C.N.R., c/o Istituto di Chimica Organica, Via Marzolo 1, 35100 Padua, Italy

Received September 13, 1984

*Authors to whom correspondence should be addressed. *Authors to whom correspondence should be addressed.

 $XY = R-N=C=0; COOCH_3-C=C-COOCH_3; COOCH_3 N=N-COOCH_3$; CCl₃-C=N; CCl₃-C(O)H.

Scheme 1

Scheme 1 [1, 2].

This synthetic procedure was recently extended to the addition of acetylacetone, ethylacetoacetate, and dimethylmalonate to cyanogen $[3-5]$ and to typical Michael acceptors [6].

TABLE I. Addition of Cyanogen to β -Ketoamides Catalyzed by 1 mol % [M(acac)₂] (M = Cu, Zn) or EtO^{-a}

⁸All products are novel compounds and gave satisfactory elemental analyses. Typical condition: $[C_2N_2] = 0.9$ M; [reagent] = 0.5 M; [cat] = 5×10^{-3} M. Bolvents were of reagent grade and were used as received. A = toluene, B = dichloroethane, C = ethanol, $D =$ dichloromethane. ^cReaction time at cq. 20 °C.

0020-1693/85/\$3.30

We report here on the addition of various acetoacetamides to C_2N_2 at room temperature, using as catalysts $[Zn(acac)_2]$ or $[Cu(acac)_2]$ in dichloromethane, dichloroethane and toluene or EtO⁻ in ethanol, Table I.

The results obtained indicate that the metal catalyst plays a determinant role in influencing the regioselectivity of the overall reaction towards compounds 1, Scheme 2, whereas a typical 'aspecific' catalyst such as the ethoxyde ion drives the reaction $\begin{pmatrix} 2 \ 1 \ 2 \end{pmatrix}$ in dichlorosing the

and the metal cata-

influencing the

ion towards com-

typical 'aspecific'

rives the reaction
 $\begin{pmatrix} 0 & 0 \\ 0 & -c \end{pmatrix}$
 $\begin{pmatrix} 0 & 0 \\ 0 & -c \end{pmatrix}$
 $\begin{pmatrix} 0 & 0 \\ 0 & -c \end{pmatrix}$

Multifunctional olefins 1 were isolated in the presence of soluble metal catalysts in all cases investigated; they were characterized* by elemental analysis, NMR, IR, UV-Vis and mass spectrometry. When $E1O^{-}$ was employed as the catalyst, compounds 2 were directly obtained from the secondary amides at room temperature. Compounds 1 could be quantitatively converted to compounds 2 when $R' = H$ by refluxing in $C_2H_4Cl_2$ for some hours or by treatment with catalytic amounts of $EtO⁻$ (1 mol % catalyst) in ethanol at room temperature.

The structures of compounds 2 were determined by single crystal X-ray analysis for $R = p\text{-}Cl - C_6H_4$ [7].

 \overline{A} compounds have been isolated as single isolated as single isolated as single isolated as single isomers. The single isomers is \overline{A}

The reason for the strict control by the metal center on the selective formation of species 1 lies

ACTIVATION HL = β -ketoamide

Scheme 3

The proposed mechanism is based on the following $\mathsf{ts:}\n$

(i) $[M(\text{acac})_n]$ complexes are known to undergo substitution reactions $[8, 9]$ such as that depicted in $ge 1$;

(ii) $[M(\beta\text{-carbonylene})_2]$ complexes easily add C_2N_2 to give cyanoimino- β -carbonylenolate complexes $[10-12]$, and we have found that some $[Cu (\beta$ -acetoacetamidate)₂] complexes react quantitatively with cyanogen to give the corresponding addition-insertion products**.

(iii) The complex $\lceil Cu(N\text{-phenylacetoacetamidate} \cdot \rceil)$ $(C_2N_2)_2$] effectively catalyzes the addition of N-phenylacetoacetamide to C_2N_2 to give the expected type 1 product.

 $\overline{}$, $\overline{}$

^{*}All compounds have been isolated as single isomers. The ¹H NMR spectra in DMSO- d_6 show that one isomer is normally predominant in solution and further work is in progress to elucidate the configuration. We report some data for representative compounds of type 1 and 2 ($R = CH₂ C_6H_5$). 1: IR, 3170, 3270, 3340 (N-H); 2230 (C=N); ¹H NMR, 2.00 (COCH₃), 8.77 (NH₂, NH), 4.35 (CH₂, d, $J = 6$ Hz), 7.32 (C_6H_5); mass spectrum: 243(100) M⁺, 91(87), $43(18)$. 2: IR, 3200, 3320, 3280 (N-H), 1720 (C=N?); ¹H NMR, 2.33 (COCH₃), 4.63 (CH₂), 7.23 (C₆H₅), 9.78 $(=N-H)$; mass spectrum: identical to 1 (at 220 °C).

^{**}The complex $\lbrack Cu \rbrack (CH_3-C(O)-C(H)-C(O)-N(H)(pCl C_6H_4$ 2], [CuL₂], is obtained from copper acetate monohydrate and the acetoacetamide in a water/ethanol mixture $(10:1)$ as a green microcrystalline powder (vield 85%), Anal. Calcd.: C, 49.55; H, 3.74; N, 5.78. Found: C, 49.82; H, 3.72; N, 5.90. M.p. 215 °C. IR (cm^{-1}) : ν_{N-H} amide = 3300(m). The complex reacts with C_2N_2 in $C_2H_4Cl_2$ at ambient temperature to give the cyanoimino yellow-green derivative $\left[\text{Cu}(L \cdot C_2 N_2)\right]$ (yield 80%). Anal. Calcd.: C, 48.95; H, 3.08; N, 14.27. Found: C, 48.33; H, 3.08; N, 14.01. M.p. > 270 °C. IR (cm⁻¹): v_{N-H} amide = 3320(m); $\nu_{\text{N-H}}$ imine = 3340(m); $\nu_{\text{C=N}}$ = 2230(vw); $\nu_{\text{C=N}}$ = 1640(m). IR data are in full agreement $[9-12]$ with the structure of the intermediate at 6 o'clock in Scheme 3.

The metal-controlled chemoselectivity towards the synthesis of compounds 1 is the consequence of the appropriate inability of the catalyst to promote the hydrogen transfer from the amide to the nitrile nitrogen in compounds 1. On the contrary, $EtO⁻$ not only catalyzes the addition of acetoacetamides to cyanogen, but is also effective in the catalysis of the cycloisomerization $1 \rightarrow 2$.

In conclusion, $\left[Cu (acac)_{2} \right]$ and $\left[Zn (acac)_{2} \right]$ prove quite convenient catalysts for the selective preparation of a group of cyanoenaminediones, which are in fact thermodynamically unstable with respect to their pyrrolinic isomers.

Acknowledgement

This work was partially supported by C.N.R., Progetto Finalizzato Chimica Fine e Secondaria.

K. Uehara, Y. Ohashi and M. Tanaka, *Bull. Chem. Sot.*

- 1 K. Uehara, Y. Ohashi and M. Tanaka, Bull. Chem. Soc. Jpn., 49, 1447 (1976).
- 2 R. P. Eckberg, J. H. Nelson, J. W. Kenney, P. N. Howells and R. A. Henry, *Inorg. Chem., 16*, 3128 (1977).
- *Internations, 2007*, 2007.
B. Corain M. Basato and H. $B.$ Corain, M. Basato, and $H.$ I. Riem, This calculity
- *Acta Lings, 20, 20* M_{obs} , M_{max} ,
- Acta, 76, L263 (1983).
5 M. Basato, B. Corain, A. Marcomini, G. Valle and G. Zanotti, J. Chem. Soc., Perkin Trans., 2, 965 (1984).
- 6 J. H. Nelson, P. N. Howells, G. C. DeLullo and G. L. J and J Org Chem R . Valle-to be published.
-
- 7 G. Valle, to be published.
8 R. C. Mehrotra, R. Bohra and D. P. Gaur, 'Metal β -Dike- $\ddot{ }$. $\frac{1}{48}$
- $\overline{1}$ Chem. Sot., *Dalton Trans., 1217 (1983).* B. Corain, M. Basato, G. *Vischim and G. Banovis*, J.
Chem. See. Dalton Trans. 1917 (1983).
- 10 *61* (1982). $B.$ Corain and $M.$ Basato, $V.$ Organomer. One L , 202 , 009
- $\ddot{}$ P_{Couln} M P_{n} $B.$ Corain, M. Basato, Λ . But Botto and G. Banotta and σ .
Cham $-22, -2744, (1082)$ *Chem., 22, 2744 (1983).*
12 B. Corain, M. Basato, C. Ballotta and M. Ahmed, *Inorg.*
- Chim. Acta, 87, 105 (1984).