Cis- and Trans-Isomers of $[Rh(en)_2X_2]^*$ where X = Cl and Br. Possible Use of ¹³C NMR Spectroscopy in their Identification

C. BURGESS* and F. R. HARTLEY

Department of Chemistry, The University, Southampton SO9 5NH, U.K.

(Received June 4, 1975)

Although it has been shown that ¹H NMR spectroscopy can be used to distinguish the cis- and transisomers of $[Co(en)_2X_2]^{\dagger,1}$ the ¹H NMR spectra of the corresponding rhodium(III) complexes are virtually identical.² Following a recent report that the ¹³C NMR spectra of cis-[Co(en)₂X₂]^{*}, where X = halide, showed two bands whereas those of the corresponding trans-complexes showed only one band³ we recorded the ¹³C NMR spectra of the analogous rhodium(III) complexes $[Rh(en)_2X_2]^*$, where X = Cl and Br. The results (see Table) indicate that whilst the *cis*-dichloro isomer does indeed show a more complex spectrum than the *trans*-isomer, both the dibromo complexes exhibit only a single ¹³C NMR peak. Accordingly ¹³C NMR cannot be used to distinguish cis- and trans-isomers of [Rh(en)₂X₂]^{*}, and distinction between these two isomers must therefore rest on infrared⁴ and uv-visible² spectral investigation.

The observation of 3 bands, which were of approximately equal intensity, in the ¹³C NMR spectrum of *cis*-[Rh(en)₂Cl₂]⁺ is perhaps unexpected. However examination of all the possible ring conformations shows, assuming that conformational interconversions are slow on the NMR time scale, that there are 8 different carbon atom environments possible in *cis*-[Rh(en)₂X₂]⁺ and 2 in the *trans*-isomer. Clearly the observation of 1 and 3 peaks respectively in *trans*- and *cis*-[Rh(en)₂Cl₂]⁺ indicates that either not all the interconversions are slow or a number of accidental coincidences occur. Clearly in view of this the observation of only a single line in the spectrum of *cis*-[Rh(en)₂Br₂]⁺ is not entirely unexpected.

In the course of this work it was necessary to prepare cis-[Rh(en)₂Br₂]⁺. It has previously been

TABLE. ¹³C NMR Chemical Shifts of $[Rh(en)_2X_2]^+Y^-$ Complexes.^a

x	Y	Isomer ^b	Chemical shifts (ppm) ^C
Cl	Cl	cis ^d	46.3, 45.3, 44.9
Cl	NO ₃	trans ^e	44.8 ^f
Br	Cl	cis ^d	46.0
Br	NO ₃	trans ^e	45.2

^a Recorded on a Varian XL-100 spectrometer operating in the Fourier Transform mode at a frequency of 25.2 MHz with proton-noise decoupling.

^b In view of the possibility of $cis \rightarrow trans$ -isomerisation the uv-visible spectra of all the solutions were recorded before and after the ¹³C NMR spectra. No changes were observed and all the spectra agreed with those reported in the literature.²

^c Chemical shifts, which are to low field of TMS, were determined in D_2O using 1,4-dioxane as an internal reference (assumed to lie 66.5 ppm to low field of TMS⁷) at a temperature of +33 °C unless otherwise stated.

^d Prepared from cis-[Rh(en)₂ X_2]ClO₄² by treatment with ⁿBu₄NCl followed by filtration to remove the precipitated ⁿBu₄NClO₄.

^e Prepared according to reference 4. ^f Recorded at +80 °C.

reported that this can be prepared by refluxing the corresponding dichloro-complex with excess sodium bromide.⁴ In following this method the refluxing was allowed to continue for about 75 minutes before cooling in ice. The uv-visible spectrum of this solution showed bands at 27,620 and 23,920 cm⁻¹, the former being that expected for the cis-dibromo product and the latter, which was only a weak shoulder, could have been due to the trans-dibromo isomer. When boiling was continued the band tentatively assigned to the trans-isomer grew in intensity and shifted to 23,360 cm⁻¹ (in agreement with the literature value for *trans*- $[Rh(en)_2Br_2]^{\dagger}$ whilst the band at 27,620 cm⁻¹ diminished to a weak shoulder. No further change in the spectrum occurred when boiling was continued beyond 2¼ hours.

Since no thermal $cis \rightarrow trans$ -isomerisation of $[Rh(en)_2X_2]^*$ complexes in water has previously been reported except for X = I,⁴ although thermal $cis \rightarrow trans$ -isomerisation in methanol has been reported for X = Cl and Br^5 and photochemical $cis \rightarrow trans$ -isomerisation in water is known for X = Cl,⁶ we investigated whether or not the presence of excess bromide was necessary. When an aqueous

^{*}Present address: Analytical Department, Glaxo Laboratories Ltd., Barnard Castle, County Durham, DL12 8DT, U.K.

solution of cis-[Rh(en)₂Br₂]ClO₄ was boiled there was a rapid change in the uv-visible spectrum that was largely complete within 15 minutes in which the band initially at 27,250 cm⁻¹ was shifted to 28,170 cm⁻¹ and a very weak shoulder at about 23,500 cm⁻¹ appeared. This was consistent with the establishment of equilibrium (1), together with the formation of a trace of the *trans*-isomer:

$$cis [Rh(en)_2 Br_2]^+ + H_2 O \rightleftharpoons cis [Rh(en)_2 Br(H_2 O)]^{2+} + Br^-$$
(1)

On further boiling the lower energy shoulder slowly increased in intensity to a peak at 23,470 cm⁻¹ at the expense of the high energy peak which, after 450 hours, was only a weak shoulder. A peak at 23,470 cm⁻¹ is expected² for a solution containing *trans*-[Rh(en)₂Br₂]⁺ together with a little *trans*-[Rh(en)₂Br(H₂O)]²⁺. The slow step of this *cis* \rightarrow *trans*-isomerisation does not appear to involve reaction of free bromide ion with either *cis*-[Rh(en)₂Br(H₂O)]²⁺ or the 5-coordinate species [Rh(en)₂Br(H₂O)]²⁺ since the reaction was not noticeably accelerated when performed in the presence of a 120-fold excess of sodium bromide. This is consistent with a dissociative mechanism. We are currently investigating further the details of this previously unobserved isomerisation.

Acknowledgements

We thank Mrs. J. M. Street for recording the ¹³C NMR spectra and the S.R.C. for a postdoctoral research assistantship (to C.B.) together with a grant towards the purchase of the Unicam SP 1700a spectrophotometer.

References

- 1 D. A. Buckingham, L. Durham and A. M. Sargeson, Aust. J. Chem., 20, 257 (1967).
- 2 C. Burgess, F. R. Hartley and D. E. Rogers, *Inorg. Chim. Acta*, 13, 35 (1975).
- 3 D. A. House and J. W. Blunt, *Inorg. Nucl. Chem. Lett.*, 11, 219 (1975).
- 4 S. A. Johnson and F. Basolo, Inorg. Chem., 1, 925 (1962).
- 5 L. P. Gendernalik, *Ph.D. Thesis*, University of Detroit, 1970; *Diss. Abs.*, 31B, 5860 (1971).
- 6 M. M. Muir and W.-L. Huang, *Inorg. Chem.*, 12, 1831 (1973).
- 7 A. J. Jones, E. L. Eliel, D. M. Grant, M. C. Knoeber and W. F. Bailey, J. Am. Chem. Soc., 93, 4772 (1971).