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A theory for the circular dichroism bands induced 
at d-d transition frequencies of symmetric (achiral) 
complexes due to long-range dispersive coupling with 
other chiral species (all species being dissociated in an 
achiral solvent) is discussed. The conditions for a finite 
effect are interpreted as symmetry rules restricting the 
symmetries of the states of the achiral complex that 
may exhibit the effect. Some suggestions are made as 
to what type of systems should be studied experimen- 
tally. 

Introduction 

The chirality of any dissymmetric species is physically 
manifest in the appearance of circular dichroism (CD) 
bands at electronic transition frequencies of the species. 
Achiral species show no such bands. It has been found 
experimentally, however, that CD bands located at 
transition frequencies of achiral species (A) may ap- 
pear when other chiral species (C) are present in the 
solution, the solvent being achiral.‘” Such bands are 
best observed when the transition of A lies at lower 
energies than the transition of C, where the effect is 
not swamped by the optical activity of the chiral species. 
The work of Hayward and Tatty’ on organic systems 
suggests strongly that the effect persists even when 
there is no association of the chiral and achiral species 
in solution. The effect was also noted by Bosnich6, 
who reported the CD of the PtCl,*- ion; in this case 
however a chiral solvent was used as the inducing 
species. Other workers’ have since reported the effect 
for inorganic species in achiral solvents, the achiral 
species again being square planar metal halides, with 
organic acid anions used as the inducing agents C. In 
all these cases, the induced circular dichroism was 
observed for magnetic-dipole allowed transitions of 
the achiral species. 

A theoretical approach’,* to this problem has been 
presented for the case where the species A and C are 
assumed to be completely dissociated in an achiral 
solvent, but coupled to each other by long-range van 
der Waals or dispersion forces. We shall refer to the 

circular dichroism arising from such a mechanism as 

dispersion-induced circular dichroism (DICD). It should 
be noted that this model can only apply for systems in 
which the relative orientations of A and C are ran- 
domised either in time or over all possible AC pairs in 
solution. In the absence of association between A and 
C, it would appear that such an assumption is reason- 
ably valid. 

In this paper, the theory of the DICD of d-d transi- 
tions of inorganic complexes is discussed. It will be 
seen that the expression for the DICD is zero unless 
a number of symmetry conditions are satisfied for the 
electronic states involved in the induction process. 
These conditions are examined in detail, and the sym- 
metry rules applied to complexes of various symmetries. 

Theory I. Method 

Consider a given pair of achiral and chiral species 
A and C in solution with an achiral solvent. We wish 
to find the CD induced in A by the chiral species C 
as a function of their separation (rAC), and of the 
intrinsic molecular properties (transition moments) of 
A and C. This may be done by determining firstly the 
activity of the AC-system, and then expanding this in 
terms of the free-molecule (or free-ion) states of A 
and C in the following way. 

The optical activity of the AC-system is described 
by the optical-rotatory pseudo-tensor, l?,, for each of 
its transitions, where 

8, = Im<OIjIS><SImlO> PI 
IO> is the ground state, IS> an excited state of the 
coupled AC-system, with 3 and m being respectively 
the electric and magnetic dipole operators. It is assumed 
that the radiation field vectors E, B and their first time 
derivatives (E, fi) may be taken as constant over the 
system. The rotatory strength (a pseudo-scalar) may 
then be defined from the above as 

R, = b+f&b 

where b is the unit vector along i. Putting ,ii.b = ,ub, 
m.b = mb leads to 
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R, = Im<Ol~blS><SlmblO> PI 

This expression holds for given relative orientations of 
the radiation field, species A, and species C. 

The states IO > and 1 S > of the AC-system may be 
determined by perturbation theory. Let the free-mole- 
cule states of A be written as 1 A’> (i = 0, 1,. .) with 
corresponding energies &iA relative to the ground state 
(i = 0). The states of C may be similarly written as 
Id> with energies Ed’. In the absence of any inter- 
action between A and C, the wave functions of the 
AC-system have the simple form 

iij> = IA’>Id>, 

exchange effects being neglected. In the presence of 
the interaction, the species are coupled by the dipole- 
dipole interaction operator 

v ~ AC = _ ;A ’ ,&-3ptA +AC 2,. +AC 

rAC3 

where rAc is the vector joining A and C, and the - 
denotes a unit vector. D, is the electric dipole operator 
for molecule A, and so on. The states of the coupled 
system may then be found by perturbation theory in 
terms of the functions I ij > to include interaction terms 
up to rAce6. In particular, we are interested in the 
stated I O> (the perturbed ground state) and I S > (the 
perturbed state derived from Iso>). In the absence 
of degeneracies, we have 

I O> = loo> + P(oo,ij) 1 ij > + P’(oo,ij) I ij > 
[31 

I S > = I so > + P(so,ij) I ij > + P’(so,ij) / ij > 

where 

P(so,ij) = -2 
ii 

<ijjiyJy> 

P’(so,ij) = 2 (2 [ <ij I v,S~j~~~~‘~~ So > _ 

iJ i’J’ ’ I’,’ h 

*‘I 

cs0l~l;~,~~;:ll~l~~~,~, 
‘J s 

Note that &ij = ci + cj, where the A and C subscripts have 
been omitted for convenience. The summations omit 
any states giving zero denominators. 

If any of the states 1 A’> are degenerate, a slightly 
different procedure is necessary. Consider the state 
1 A”> to be n-fold degenerate, the levels being de- 
scribed by the orthonormal set of functions I &“>, 
a=1 , . . . ,n. The perturbed states of the AC-system are 
then developed in two steps. Firstly, a state (S, > is 
defined for each a according to equation [3], except 
that only states not degenerate with I &,“> are in- 
cluded in the perturbations sums. Secondly, the set 
IS, > is used as a basis for a variation treatment to 
find the n new states / S, > which are diagonal in V,c. 
These may be written in the form 

IS,> = g&a>. [41 

It should be noted that the coefficients C;, are func- 
tions of VA,-, and thus of the relative orientations of 
A and C. Degeneracies in any of the other states may 
be similarly streated. 

These expressions for I O> and I S > may now be 
substituted directly into R,. The operators $ and m 
are expanded as9 

where ji,, mA are the intrinsic electric and magnetic 
dipole operators of A, and so on. M is that part of the 
magnetic moment operator which gives rise to magnetic 
terms due to coupled electric dipoles on different 
molecules. It may be neglected when dealing with 
magnetic-dipole allowed transitions. R, will then be 
given as a power series in r,&3, which may be trun- 
cated at rAcA terms. The non-degenerate case is 
straightforward, R, then referring to a single transition. 
For a degenerate level IA”>, we consider the n-fold 
degeneracy discussed above. It will be assumed that 
V does not separate the states /S, > appreciably 
el;getically, so that R, is calculated for all IS, > 
assumed to have the unperturbed energy E,. In this 
approximation, it follows that 

R, = tr l? = tr [eI?“et] = tr I?” 

where the matrix elements are defined as 

hy = Im<OI~bISfl><$ /mbIO>dp,, 

kBo = Im<OI~bISa><Sa /mb/O> 

with C& defined according to equation [4]. Without 
the assumption that the CD bands for the n sub-levels 
are centred at the same energy E,, it would be neces- 
sary to solve explicitly for the coefficients ($a as a 
function of the relative orientation of A and C (an 
unenviable task). It then follows that the only effect 
of degeneracies in this model is to introduce a sum 
over the degenerate states I&*> into the expression 
for R,. Other degeneracies are similarly treated. 

As the above results hold for A and C in a fixed 
relative orientation, and the AC-system in a fixed 
orientation relative to the radiation field, the scalar 
R, must now be averaged over all such orientations. 
In both averages, all orientations are assumed equally 
probable. The procedure is fully discussed elsewhere’. 
All terms in rAce3 vanish, so that the leading terms 
have an rAc-6-dependence. For convenience, these 
results are given in the following se’ction. 

Theory II. Results 

As will be discussed further in a later section, the 
d-d transitions of metal complexes may be magnetic- 
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Virtual processes leading to CD-bands can occur, 
however, for the coupled AC-system. In particular, the 
IO> to 1 S> transition may now become both electri- 
cally and magnetically allowed, leading to the DICD of 
A. The virtual process may be broken down into its 
separate A and C components in the following way: 

IA’> (Intermediate1 

dipole allowed, but are invariably electric-dipole for- 
bidden. We therefore consider the transition IA’>+ 
1 A” > to be magnetic-dipole allowed, and the averaged 
induced rotatory strength appearing at energy E, re- 
duces to7,” 

I?, = -~rAc~~~os(t)/lCoU(v)~~YV 

where 

Q,“(t) = Im iAot X ZAtS. mAso 

&O”(v) = &ov x&vu &uo 

and 

d “” = [(E~+(E~ + &,+,j]-1 for (E,+,)<<E,,E,<E, t 

The transition moments are defined as ,iiAot = <A” 

]u’I A’> and so on. Note that u and v refer to the states 
I C” >, 1 C’> of the chiral species. /lcou(v) is the 
inducing power of the chiral species, and it should be 
noted that it is independent of the intrinsic rotatory 
strength of C. Q,““(t) may be called the inducibility 
of A, and is a measure of the ability of state I A”> to 
exhibit DICD through the intermediate state IA’>. 
The complete result should, of course, be summed over 
all t, u and v, and also over any degeneracies of the 
states involved. In some cases, however, there may be 
a certain transition that is much stronger in intensity 
than any other, so that a single intermediate state I A’> 
need only be considered in that case. 

A clearer understanding of this result may be obtained 
by a simple physical interpretation of the induction 
process. Although the DICD is independent of the 
rotatory strength of the chiral species, let us first see 
how CD arises for the species C. 

The chiral species may be said to be optically-active 
because it has a state (or states), say 1 C”>, which is 
accessible from the ground state 1 Co > either by electric 
or magnetic dipole transitions. In responding to the 
radiation field, the following virtual process thus leads 
to the CD band: 

[CO> ..m...> IC”> 

(Excitation via magnetic dipole) 

lCO> ,____K_ IC”> 

(Relaxation via electric dipole) 

For the achiral species A, transitions to states I A’> 
may be either electric-dipole allowed or magnetic- 
dipole allowed, but not both. It follows that virtual 
processes analogous to the above are thus impossible. 
In particular, the process 

IA0 > . ..?..>IAS> 
(Excitation via magnetic dipole) 

can occur, but as it cannot relax through the electric 
dipole, no CD-band can appear. 

I 
I Y 

‘\ 

1 A”j:/(.?“. . .; IA”> (Excitation) 

(Relaxation) 

Note that the transitions I A” >, I C” > cannot constitute 
the virtual process alone, as each species must separately 
return to the ground state. Thus the electric-dipole 
accessible states I A’>, I C’> are necessary to complete 
the process, the moments involving t and v being 
coupled through the van der Waals interaction. We 
shall refer to IA’> as the intermediate state in the 
induction of CD in 1 A” >. 

General Symmetry Rules 

Both the inducibility of A and the inducing power 
of C involve products of the form a X b. c. This product 

vanishes if any two of the vectors are collinear. This 
has important consequences in restricting the states 
of an achiral species participating in the induction 
process to those of certain symmetries. In this section, 
the symmetry rules for which the inducibility of A, 

Q,O’(t) = Irn(j&O’ X zAtS .mASo) 

is non-zero are discussed (the chiral species will be 
considered separately in a later section). 

Suppose the point group of A has been determined, 
and the irreducible respresentations (IR’s) designated 
as r. The axes (xyz) are chosen in accord with the 
usual conventions for that point group.” The states 
I A’>, IA”>, (A’> may then be taken to be bases 
for the IR’s r,, r,, Tt respectively. Let the IR’s 
generated by mx, my, m, (the Cartesian components 
of m) be denoted by (i) rmXmymZ if they are the basis 
for a three-dimensional IR, (ii) Tm,,,,, , rmz if m,, my 

are the basis for a two-dimensional IR, and m, is that 
for a one-dimensional IR. and so on. The IR’s generat- 
ed by the components of ii are analogously defined. 

The symmetry rules for a finite inducibility may then 
be stated as follows: 

I. If All IR’S One-dimensional 

(i) To Or, must contain r,, ; 

(ii) row-, must contain r,, ; 
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(iii) r,@r, must contain &,, ; 

(iv) i + j =# k 4= i where i, j, k each run over 
Cartesians x, y, z. 

The o denotes direct products. Rules (i) to (iii) arise 
simply from the conditions for finite matrix elements, 
whereas (iv) embodies the condition for the vector 
product to be non-vanishing. 

II. Multidimensional IR’S 

For multidimensional IR’s, the procedure is only 
slightly modified. For example, if the pair pj, pk are 
the basis of the two-dimensional IR r,,,,,, , it follows 
that (ii) and (iii) above become 

(ii) TOOT, must contain &+ ; 

(iii) rtWs must contain Jr,@, 

The other conditions remain unchanged. 
Although these conditions may seem slightly com- 

plex, they are deceptively easy to employ in practice 
with recourse to a set of character tables.” Their 
utility lies in the immediate prediction of which states 
1 A”> are potentially inducible, and which states 1 A’> 
can act as intermediates in the induction process. For 
example, if there is only one strong electric-dipole 
allowed transition / A0 > 4 / A’> in the observed spec- 
trum of A (or onp, which is appreciably more intense 
than any others), it should be possible to predict which 
states I A,> (if any) may exhibit DICD. Alternatively 
DICD could be used to assign the symmetry of a transi- 
tion if it is magnetic-dipole allowed, or possibly locate 
it when conventional techniques fail. It is worth pointing 
out here that the dependence of the DICD on both the 
nature of /A”> and I A’> could lead to information 
which could supplement that obtainable from MCD 
techniques,‘2,‘3 which depend to a first approximation 
only on the state I A”>. 

To apply the symmetry rules, it is necessary to know 
the IR’s generated by the Cartesian dipole components 
and the direct product rules for the representations of 
the achiral point groups. These are generally available 
in standard texts.” 

It is instructive to work through a simple case. Con- 
sider a species of D4,, symmetry (e.g. Pt C14*-) with 
an Al8 ground state. From character tables,” it follows 
that 

I,& = E,, L, = E,, r,, = Az~, r,z = A2u 

The magnetic dipole can lie either in the z-direction or 
in the xy-plane. In the first case, DICD-active states 
must satisfy the following symmetry rules: 

(i) AlgO r5 must contain A,,; 

(ii) A,, @r, must contain E,; 

(iii) T,OT, must contain E,. 

TABLE I. DICD-allowed Symmetries for Octahedral and 
Square-Planar Complexes. 

Symmetry of Symmetry of Symmetry of 
Ground State 1 A”> / A’> / A’> 

Octahedral (0,) 

A% 
AQ 

E, 

TQ 

T 2g 

Note that rule (iv) has already been satisfied by choos- 
ing the combination [m,, p*,, p,]. It follows directly 
from the product rules that rs = AZg, Tt = E,. For the 
magnetic dipole in the xy-plane, the analogous treat- 
ment leads to rs = Es, Tt = A,,. These are the only 
two possiblilities for the A,, ground state: DICD can 
appear at an A2g state (through the intermediate E,) 
or at an E, state (through an intermediate A*“). 

In Table 1, the symmetry rules have been used to 
determine the possible symmetries of the states /A”>, 
/ A’> for various ground state symmetries for octahe- 
dral (0,) and square planar (D4,,) complexes. Similar 
tables are readily compiled for any other point group 
using the symmetry rules. 

Finally, it should be noted that the states /A’>, 
,I A”>, I A’> should all have the same multiplicity so 
that all transitions between them will be spin-allowed. 

Applications 

The lowest energy transitions of metal complexes 
are usually the d-d transitions of the metal ion, the 
d-orbitals being strongly perturbed by the ligands.‘43’5 
If the ligand field has inversion symmetry about the 
metal ion (e.g. Oh and D4,, complexes), such transi- 
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tions may be magnetic-dipole allowed but are electric- 
dipole forbidden. It follows that such transitions may 
exhibit DICD (provided they are magnetic-dipole al- 
lowed) but cannot act as intermediates in the induction 
process. Although the d-d transitions may become 
weakly electric-dipole allowed through such mechan- 
isms as vibronic coupling, it is highly unlikely that they 
could contribute to the induction process by acting as 
intermediates as DICD is already a small effect and 
thus will be seen only for large inducibilities. It may 
be expected therefore that the intermediate states in 
the induction process are the charge transfer states 
that are common in coordination compounds, as these 
are generally strongly electric-dipole allowed. If the 
ligand field does not have inversion symmetry, some 
of the d-d transitions may become electric-dipole al- 
lowed by symmetry. In general, however, the d4 
transitions are still relatively weak, so that charge 
transfer states would seem to be the intermediates in 
such systems as well. 

Typical of complexes showing strong charge transfer 
bands are octahedral hexacarbonyls and hexahalides. 
A few particular examples should suffice to illustrate 
the features of such systems. The hexacarbonyls Cr 
(CO),, Mo(CO), have ground state symmetries ‘Alp, 
so that application of the symmetry rules predicts that 
states of symmetry lTlp (which are magnetic-dipole 
allowed) may be DICD-active through intermediate 
states of symmetry ‘T1,. Spectroscopic studies16 of 
these complexes have shown that there is a IT,, state 
at about 30,000 cm-‘, and strong ‘Ti, charge transfer 
states at 35,000 and 43,000 cm-‘. Thus a DICD band 
should be observable in the region of the ‘T,, transi- 
tion. The hexahalides of the d6 ions of the Fe, Co, Ni 
groups also have ‘Alg ground states, with strong low- 
lying ‘T,, charge transfer states.” In this case then 
the ‘Tip states should also be DICD-active. 

Another interesting example is that of the Ddh halide 
complexes (square-planar) of the Ni group (ni, Pd, 
Pt). The ground state is ‘Alg, so that from Table I it 
follows that the ‘AZg may be DICD-active through 
*E,, or the ‘E, through the ‘AZ,. It appears that the 
‘EZu bands are much stronger than the ‘Azu bands 
in these complexes,” so that the ‘A,, may be expect- 
ed to have the stronger DICD. This is indeed found 
to be the case for PtCI,Z-, where Bosnich6 found 
that CD was induced in the ‘AZg, but not the ‘E,. 

The appearance of strong low-energy charge transfer 
bands seems quite general for halide complexes, and 
these would seem to be good systems for future DICD 
studies, especially if the chiral species is also chosen to 
be negatively charged to avoid association. The neces- 
sity for having relatively low-lying charge transfer 
states is the appearance of the transition energy E, in 
the denominator of the induced rotatory strength; 
however, equally if not more important is the necessity 
for both Gst, $*’ to be large, i.e. both transitions 

1 A’>+ IA’> and 1 AS>-+ 1 A’> must be strongly elec- 
tric-dipole allowed. 

The Inducing Power 

Thus far the major concern has been the determina- 
tion of the conditions for a non-vanishing inducibility 
of the achiral species A. It remains to discuss the 
properties of the chiral species C which lead to strong 
DICD in A. 

The first excited state of C, 1 C”>, should lie ener- 
getically above the state of the achiral species 1 A”> 
so as not to mask the DICD of A. At the same time, 
however, the transition energies Ed, E, should be as 
close as possible to maximise the effect. This follows 
from the appearance of the quantity (E,+,) in the 
denominator of the induced rotatory strength. 

A high inducing power requires the existence of 
two states /C”>, IC”> which are both linked to the 
ground state and to each other by strong electric dipole 
transition moments, no two of which may be colinear. 
As a general rule therefore the chiral species should 
lack as many symmetry elements as possible, and pre- 
ferably be asymmetric as distinct from merely chiral. 
Again, it may be noted that d-d transitions of chiral 
complexes are still generally weak, so that these will 
be unsuitable as inducing agents unless several strongly- 
allowed ligand transitions exist with the required com- 
binations of electric transition moments; asymmetric 
organic species should, in general, be used. 

The chiral species should also be chosen judiciously 
so that association with the achiral species may be 
neglected. This may be done by avoiding systems where 
A and C are of apposite charge and using, if possible, 
species of similar or zero charge. Once the chiral 
species is chosen, it may be characterised by its inducing 
power and its transition energies. These may then be 
assumed constant and the effect for a range of achiral 
species measured or predicted. 
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