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Introduction 

It is now recognised that many aspects of chem- 
istry are, in some considerable measure, topologically 
determined. For example, graph theory has been ap- 
plied to problems in Valence Theory - an aspect which 
has been explored by several authors.1,2,3*4 Perhaps 
the earliest application of formal graph theory to a 
chemistry problem was Cayley’s work in determining 
the isomer counts of the paraffinic hydrocarbons.’ A 
much more recent application also concerns isomers 
and is the subject of the present communication. 

Fluxional (stereochemically non-rigid) molecules, 
undergo rapid molecular rearrangements. All the iso- 
mers have the same equilibrium geometry and differ 
only in atomic permutations, but on a nuclear magnetic 
resonance time scale the properties of individual atoms 
may be a time average of those associated with mote 
than one position. Although is not always possible to 
associate a unique permutation with a unique permu- 
tational mechanism each species has a definite number 
of permutational isomer?j’ each permutational me- 
chanism leading to a characteristic pattern of inter- 
conversions between these isomers. The various me- 
chanisms are conveniently distinguished by the different 
shortest path sequences by which any given isomer is 
converted into another. The shortest paths are detailed 
in a so-called distance matrix of the system, examples 
of which have been given by several authors. However 
there appears to be in the chemical literature no details 
of the derivation of such matrices. It is the purpose of 
the present communication to remedy this ommision 
and to propose some innovations that will increase the 
information content of them. 

Network Matrices 

A network, N,, is an array of vertices (vl, v2, v3, . .v,) 
containing paths between the various vertices which 
may or may not be directed (a graph or digraph). A 
path Vi+Vj is represented by a line (edge), which if 
one way only, is distinguished by an arrow in the direc- 
tion i-t j. A permutational isomerisation can be repre- 
sented by a network if each permutational isomer is 

assigned to a unique vertex and the permutation me- 
chanism is shown by joining the vertices with directed 
lines. Distinguishable mechanisms will have different 
connections between the vertices. In a network re- 
presenting a fluxional mechanism, a directed line from 
vertex a to vertex b implies that there will also be a 
directed line from b to a (microscopic reversibility). 
This reversibility would not be a feature of a network 
appropriate to a system in which a net chemical reaction, 
accompanied by large energy changes, occurs. 

The vertices and lines of a network, N,, containing 
n vertices can be represented by an adjacency matrix 
A(N,). In this matrix the rows and columns are label- 
led with the indices of the vertices. The matrix element 
arj = 1 if there is a directed line connecting vertex i to 
j; arj = 0 if there is no such path. In Fig. 1 we show a 
simple network and the corresponding adjacency ma- 
trix (this network does not correspond to a permuta- 
tional isomerisation). 

Figure 1. A Network and its Adjacency Matrix. 

Adjacency matrices have a number of valuable pro- 
perties.’ Of particular importance is the fact that the ma- 
trix product A(N,) A(N,) = A*(N,) is a matrix where 
the existence of an element aij = m (where m is an 
integer) means that there are m directed paths of 
length 2 from vertex i to vertex j. The detailed se- 
quences which give rise to these paths is implicit in the 
matrix multiplication of A(N,). Thus, in the example 
shown in Figure 1, the matrix A*(N,) is 

0 0 1 0 

A(N,) NW = 1 0 0 0 

i ) 
0 1 0 0 
1100 

where the aZ12 element is given by 

a2r2 = azlall + az2azl + a23a31 + a24a41 

= 0.0+0.1+1.1+0.1 = 1 
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In this multiplication the existence of both abortive 
and succesful pathways can be readily seen. Further- 
more, it shows that the sole path of length 2 to vertex 2 
from vertex 1 is given by the term aZ3 ‘a31, i.e., the 
sequence v2+v3--+v1. In a similar way the products 

A3(N,), A4(N,) . . . . .A’(N,). . . . .Ad(N4) indicate those 
vertices that are connected by directed paths of 
length three, four . . c. d. Successive multiplications to 
higher order for a small network will not give more 
information about connected vertices because paths 
become duplicated. It is convenient to define a partial 
distance matrix #(NJ where each element in #(NJ 
is set equal to the c value in A’(N,). For instance, in 
the above example 

d’(N,) = 

That is, each element of this matrix represents a distance. 
The least distance matrix D(N,) is given by 

D(N,) = d(N,) @d’(N,) 0 d’(N,). . . . . . . 

In this equation the matrices on the r.h.s. are added in 
strict numerological sequence. The element D, of the 
distance matrix is either zero or is equal to the first 
non-zero ijth element encountered in the r.h.s. matrices. 
That is the least distance matrix gives the shortest dis- 
tances between two vertices (non-connected vertices 
are represented by zero). Because the distance between 
a vertex and itself is zero, all diagonal elements of the 
least distance matrix are zero. Thus, in the above ex- 
ample, 

D(N,) = 

This process is readily computerised and can be used to 
calculate the distance matrices of networks when in- 
spection methods are not practicable. 

The above definition and derivation of adjacency 
and distance matrices uses binary arithmetic in net- 
works - if two vertices are connected we represent this 
by the number one; if there is no connection we re- 
present this by the number zero. Distance matrices 
thus defined suffer from two limitations. Firstly, it is 
assumed that there is a fixed distance between con- 
nected vertices (for a chemical system this would imply 
constant potential energy barriers). Secondly, there is 
no indication of the number of different paths (of the 

same length) which interconnect two vertices. We now 
suggest a simple method by which these limitations can 
be overcome. 

An Augmented Adjacency Matrix 

We require a matrix algebra that will allow charac- 
terisation of both connectivity and distance. In Fig- 
ure 2 we show a network N4 in which the distance 
between vertices varies from 1 to 4 units. Although, 
again, this matrix does not correspond to any particular 
fluxional mechanism, it is a simple model of a fluxional 
system in which a variety of mechanisms, characterised 
by different energy barriers, all operate. In the present 
context it is convenient to represent the different 
energy barriers by different distances (all of which we 
take to be simply related). We define an “adjacency- 
distance matrix” X(N,) which contains these distances 
as elements. 

Figure 2. A Network and its X(N,) Matrix 

The partial distance matrices can be found by defining 
the law of combination as addition in the normal ma- 
trix multiplication sequence, but listing each contri- 
bution to the matrix element separately (we note that 
contracted representations will often be possible). 
That is, b, = [(aik + akj), (ail, + aa) + . .] with the con- 
dition that aik + akj = 0 if aikr akj = 0 (zero terms will 
not be included in the matrix). So, for the network of 
Figure 2 we have 

(28) (0) (3,‘) (0) 
X’(N,) = (0) (2,4) (0) (5,5) 

(3,‘) (0) (4,6) (0) 
(0) (5s) (0) (WJ) 

For X3(N4). . . etc. the same method is followed ex- 
cept that when evaluating the sum (aik + akj) it is neces- 
sary to include all combinations of terms between aik 
and akj should each contain more than one. Thus, 
(2,s) + (3,7) = (5,9,11,15). 

The least distance matrix is computed in a manner 
similar to that given earlier except that in the expres- 
sion 

D’(N,) = X(N,) 0 X’(N,) 0 X3(N4) + . . 

it is necessary to scan all terms in the r.h.s. expression 
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in order to determine the least distance between two 
vertices. In the present example we have 

i 

(0) (1) (3) (4) 
D’(N) = (1) (2) 2(5) 

(3) g; (0) (3) 
(4) 2(5) (3) (0) ) 

In deriving this expression we have recognised the ex- 
istence of two independent and distinct paths of length 
5 between vertices 2 and 4. Such replication of least 
distances is much more common in situations in which 
only one permutational mechanism is considered and 
is, evidently, very pertinent when considering the acces- 
sibility of one vertex from another. An unmodified 
distance matrix may, in such situations, give a misleading 
impression of accessibility. Indeed, for such cases, it is 
generally the case that the more remote that one vertex 
is from another, the greater the number of pathways of 
least length. As an illustration of this we describe the 
possible fluxions of the trigonal bipyramidal molecule, 
R,NPF,. This molecule has six permutational isomers 
(if we assume that the fluorines undergo rapid exchange 
while the amino group is static in an equatorial posi- 
tion”). The exchange of fluorines gives 4! permuta- 
tions but some of the permutations are equivalent be- 
cause of the point symmetry of the molecule (assumed 
to be C,,)* so that the number is reduced to 4!/4 = 6. 
These six isomers of R,NPF4 are shown in Figure 3. 

5 
5 

R,N-P’ ‘; 

5 

I {d 

F4 5 

5 
F4 

R2_k RzN-/;~ 

F; 5 

II 11234) III {1243) 

F3 F4 5 
IV (1324) V (13’d VI {1432} 

Figure 3. The permutational isomers of R,NF,. 

Above the coalescence temperature there is rapid ex- 
change between equatorial and axial fluorines on the 
NMR time scale. There are a number of possible me- 
chanisms by which these fluorines could exchange: 1) 
the simultaneous exchange of all four fluorines, 2) 
simultaneous exchange of three fluorines, 3) simulta- 
neous exchange of two fluorines (we recognise that 
these are not all in accord with the experimental data, 
but the present argument is illustrative only). The 
X(N,) matrices are shown below. 
In constructing these matrices we have assumed that 
the four atom exchange is the Berry mechanism,l’ the 

I 
I 
II 

III 

IV 
V 
VI ( 

0 
0 
0 
1 
0 
0 

i 0 0 1 1 1 

1 

( 0 1 0 1 1 

1 
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0 
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0 
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1 
1 
0 
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1 
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0 
0 
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1 
0 
1 
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1 
1 
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1 
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VI 
0 
1 
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1 
0 
1 
1 
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0 
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0 1 

Mechankm 1 

Mechanism 2 

Mechanism 3 

* This point group is appropriate to the N.M.R. time scale. 
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three atom process is an adapted turnstile mechanism,‘2 
and the two atom process is a straightforward inter- 
change of an axial and equatorial fluorine. Although 
different mechanisms will generally lead to different 
matrices it is to be noted that cases 2 and 3 are equiva- 
lenty topologically. The least distance matrices can be 
found by the prescribed method and are shown below, 
where mechanisms 2 and 3 again give identical matri- 
CtZS. 

TABLE I. Isomer Labelling. 

Isomer Ligand (Positions 1 and 5 are axial) 
Number A B C D E 

i 

0 0 0 l(1) 0 0 
0 0 0 0 0 l(1) 
0 0 0 0 l(1) 0 

l(1) 0 0 0 0 0 
0 0 l(1) 0 0 0 
0 l(1) 0 0 0 0 1 

Mechanism 1 

i 

0 l(1) l(1) 4(2) l(1) l(l) 
l(1) 0 l(1) l(1) l(1) 4(2) 
l(1) l(1) 0 l(1) 4(2) l(1) 
4(2) l(1) l(1) 0 l(1) l(1) 
l(1) l(1) 4(2) l(1) 0 l(1) 
l(1) 4(2) ‘(1) l(l) l(1) 0 i 

Mechanism 2 and 3 

The additional information provided by our method is 
most significant for complicated systems. For example, 
the possible networks for PF, (which has twenty per- 
mutational isomers) are not trivial to obtain although 
individual steps are readily listed. Fortunately, only the 
latter are needed. As an example the X(N,,) matrix 
appropriate to a Berry mechanism is (the isomer label- 
ling is as given in Table I): 

1 1 2 3 4 5 
2 1 2 4 3 5 
3 1 5 3 4 2 

4 1 5 4 3 2 
s 1 3 5 4 2 
6 1 4 5 3 2 

7 1 4 2 5 3 
8 1 3 2 5 4 
9 4 1 5 3 2 

10 3 1 5 4 2 
11 4 1 2 5 3 
12 3 1 2 5 4 

13 2 1 3 4 5 
14 2 1 4 3 5 
15 2 3 1 5 4 

16 2 4 1 5 3 
17 4 2 1 3 5 
18 3 2 1 4 5 

19 2 3 4 1 5 
20 2 4 3 1 5 

from which the augmented distance matrix can be computed: 
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This form is matrix is illuminating in that it reveals, for 
instance, that permutational isomers 1 and 2 are con- 
nected by twelve independent paths of length 5, whereas 
other isomers are connected by unique paths (e.g. iso- 
mers 1 and 5 are connected by one path of length 2). 

The form of the network matrices described in this 
paper is general and is therefore applicable to a wide 
variety of chemical systems. Applications to date have 
included bonding theory and isomer counts. In this 
paper we have concentrated on the already established 
application to fluxional molecules where the connectiv- 
ity index relates to the possible interchange between 
isomers, and a distance parameter which gives the path 
length between the isomers. The final form of the dis- 
tance matrix gives the number of paths of minimum 
length by using an algebra in which matrix elements 
are added in the conventional multiplication sequence. 
With this development the applications are widened to 
cases where, for instance, the distance parameter can 
be related to an energy barrier. 
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