281

A Study of the Crystal and Molecular Structure of BeCl₂(NCCH₃)₂ by X-Ray Diffraction and MO Calculations

C. CHAVANT, J. C. DARAN and Y. JEANNIN Laboratoire de Chimie des Métaux de Transition, Université Pierre et Marie Curie, 75005 Paris, France G. KAUFMANN and J. MacCORDICK Groupe de Spectroscopie Moléculaire, Université Louis Pasteur, 67000 Strasbourg, France Received February 15, 1975

A comparative study of the molecular structure of the 1:2 complex of beryllium chloride with methyl cyanide is carried out by X-ray diffraction and MO calculations of both CNDO and ab initio type. The site symmetry of the beryllium atom in $BeCl_2(NCCH_3)_2$ is shown to be 4-coordinate, deformed tetrahedral; a novel feature lies in a slight "crab-claw" configuration assumed by the nitrile ligands, which are coordinated by nitrogen to the metal atom. Experimentally determined interatomic distances and bond angles are compared with those predicted by MO treatment involving energy minimization. Application of the computational method in the case of the microcrystalline, nonisotypical compound BeCl₂(NCCl)₂ suggests that the latter molecule also has a distorted tetrahedral structure, but with Cl-Be-Cl and N-Be-N bond angles which are respectively greater and smaller than those of the corresponding methyl cyanide complex.

Introduction

Although addition compounds of beryllium chloride with various aliphatic and aromatic nitriles have been known for many years¹, very little work appears to have been reported on the structural features of these complexes. In connection with the recent preparation of the new compound BeCl₂(NCCl)₂,² it appeared of interest to examine the 1:2 type of adduct from the standpoint of a simple molecular model based on 4-coordinate beryllium. It is expedient, for this purpose, to consider the cyanogen chloride complex together with the analogous methyl cyanide derivative since it would be expected that the low structural complexity of these nitriles should render them readily accessible both to crystallographic and computational treatment. In the present work, the data obtained from an X-ray study of the molecular structure of BeCl₂ (NCCH₃)₂ are used to verify MO calculations which are subsequently applied to the microcrystalline compound BeCl₂(NCCl)₂. It is useful, to this end, to

compare the predictions furnished by the semi-empirical and *ab initio* methods both with each other and with the established crystallographic data.

Experimental

Synthesis

The nitrile adducts of anhydrous beryllium chloride were prepared by procedures described elsewhere^{1, 2}, using cyanogen chloride and methyl cyanide which had been previously purified and dried by distillation over phosphorus pentoxide and calcium hydride, respectively. Single crystals of $BeCl_2(NCCH_3)_2$ suitable for X-ray structural studies were obtained by slow cooling of heated solutions of the adduct in excess methyl cyanide under nitrogen, followed by evaporation of the solvent *in vacuo*. All operations involving handling and transfer of the compounds were carried out under dry nitrogen.

Crystal Studies

Lattice constants were measured from precession photographs. Crystal data are shown in Table I. Line distances were measured on films to the nearest 1/100 millimeter and a correction for film shrinkage was applied. The density was measured by pycnometry in carefully dried petroleum ether².

A single crystal with dimensions $0.43 \times 0.33 \times 0.33$ mm used for data collection was placed in a glass capillary in a glove box. After sealing, this tube was set on a

TABLE I. Crystal Data.

$a = 12.31 \pm 0.01 \text{ Å}$	Systematic Absences
$b = 9.984 \pm 0.008 \text{ Å}$	
$c = 6.390 \pm 0.006 A$	(0kl): k + l = 2n + 1
$V = 785 \pm 2 \text{ Å}^3$	(h01): h = 2n + 1
$d_{exp} = 1.41 \pm 0.05$	
$d_{RX} = 1.38 \pm 0.05$	Space Groups : Pna2 ₁ or
Z = 4	Pnma

30 cm diameter eulerian cradle. MoK α radiation ($\lambda = 0.71069$) was supplied by a stabilized CGR Θ 60 generator. Diffracted intensities were measured with a scintillation counter equipped with a pulse height analyser adjusted to MoK α energy in such a way that 90% of the diffracted intensity was counted. An oriented graphite monochromator was placed in front of the counter window.

731 independent reflections for which the Bragg angle was less than 25°, were recorded at room temperature, with $\omega - 2\Theta$ scan, after manual setting of the crystal. A scan of 100 seconds corresponds to 1.25° in the Bragg angle. Background was measured for 30 seconds at both ends of scan in fixed position.

Three reflections 060, 600 and 111 were chosen as standards and their intensities measured twice a day. No anomaly was observed. Forty reflections for which counting rates were greater than 10,000 c/s, were corrected for counting losses³. The intensities were corrected for Lorentz, absorption and (in the least-squares refinement) secondary extinction effects. The absorption coefficient μ was determined to be 7.56 cm⁻¹. The resulting transmission factors were in the range 0.73 to 0.81. For every structure factor F, a standard deviation σ is computed:

$$\sigma = \frac{F \times \varDelta C}{2C}$$

where C is the integrated intensity and ΔC the error in integrated intensity.

If the observed structure factor was less than or equal to its standard deviation σ , it was considered as a zero reflection and the structure factor was set at one half the value of the standard deviation. During least squares refinements, the reciprocal of the standard deviation was used as a weighting factor.

Results and Discussion

Structural Determination of BeCl₂(NCCH₃)₂

The test of Howels, Phillips and Rogers⁴ (Figure 1) and the computation of second and third order moments on diffracted intensities⁵ (Table II), suggested a centered space group. Accordingly, Pnma was chosen. From a three-dimensional Patterson map, the chlorine atoms were found in the y = 1/4 symmetry plane. A least-squares refinement⁶ of these positions, followed by Fourier difference synthesis, revealed the positions of the carbon, nitrogen and beryllium atoms. Atomic positions of all atoms were refined by least squares using the form factors of Cromer and Waber⁷ and isotropic temperature factors. The resulting value of R was 0.14, where $R = \Sigma |(F_{calc} - F_{obs})| / \Sigma F_{obs}$. When anisotropic temperature factors were introduced and the form factors corrected for the real part of the anomalous dispersion, R was reduced to 0.06. After elimination of 15 reflections for which too large differences

TABLE II. Moments on Diffracted Intensities.

	Experimen- tal Values	Theoretical Centric Case	Values Acentric Case
Second Order	2 425	2.064	2.096
Third Order	3.425	3.064	2.086
Moment	19.975	16.107	7.054

Figure 1. Rogers' test: points are experimental values. (1) is related to acentric case and $(\overline{1})$ to centric case.

 $(F_{obs}-F_{calc})$ showed an error of manual adjustment, the R factor decreased to 0.051. A final refinement, including an isotropic extinction coefficient⁸, converged to:

Non weighted R, including 201 zeros	0.066
Non weighted R, excluding 201 zeros	0.051
Weighted R, including 201 zeros	0.048
Weighted R, excluding 201 zeros	0.046

where weighted R is: $R_w = (\Sigma(w | F_{calc}-F_{obs}|)^2 / \Sigma (wF_{obs})^2)^{1/2}$. The value of the secondary extinction parameter is $g = 0.34 \times 10^{-5}$.

Throughout the refinement of the structure, the minimized function was weighted R.

A Fourier difference synthesis did not show peaks higher than the error on electron density (0.44 e/Å^3) ; thus hydrogen atoms could not be located.

The final positional parameters and the thermal parameters are given in Table III. Observed and calculated structural factors are presented in Table IV. The value of F(000) is 1,845. Interatomic distances and bond angles are given in Table V.

Description and Discussion of the Structure

The beryllium atom is tetrahedrally surrounded by two chlorine atoms and two nitrogen atoms of the methyl cyanide molecules (Figure 2). The chlorine

TABLE III. Atomic Parameters and Anisotropic Thermal Vibration Components, exp $[-2 \pi^2 (U_{11}(ha^*)^2 + U_{22}(kb^*)^2 + U_{33}(lc^*)^2 + 2 U_{12}hka^*b^* + 2 U_{13}hla^*c^* + 2 U_{23}klb^*c^*)]$. Standard deviations are in parenthesis.

Atoms	x/a	y/b	z/c	U ₁₁	U ₂₂	U ₃₃	U12	U ₁₃	U ₂₃
Cl(1)	0.07362(9)	1/4	-0.2405(2)	0.0522(6)	0.0609(5)	0.0385(6)	0.0	0.0047(4)	0.0
Cl(2)	-0.14552(8)	1/4	0.0755(2)	0.0374(5)	0.0569(5)	0.0511(6)	0.0	-0.0014(4)	0.0
Be	0.0138(4)	1/4	0.0480(7)	0.037(2)	0.037(3)	0.033(2)	0.0	-0.006(2)	0.0
Ν	0.0684(2)	0.3833(3)	0.1858(4)	0.0453(8)	0.046(2)	0.045(1)	-0.005(1)	-0.002(1)	-0.003(1)
C(1)	0.1101(2)	0.4586(3)	0.2898(5)	0.041(2)	0.039(1)	0.043(2)	-0.000(2)	0.001(1)	0.001(2)
C(2)	0.1642(3)	0.5531(4)	0.4246(6)	0.061(2)	0.049(1)	0.058(2)	-0.007(1)	-0.010(2)	-0.017(2)

Figure 2. Occupancy of the unit cell.

TABLE IV.	Observed and Calculated Structural Factors: columns	are k, l, F observed, F calculated.
-----------	---	-------------------------------------

																			_					
2 4 6 8 0 3 5 7 9 1 0 2 4 6 8 0 1 3 5 7 9 2 4 6 8 0 1 5 7 0 2 4 6 1 3	$H = 0$ $0 \ 302 \ 32$ $0 \ 4214 \ 430$ $0 \ 409 \ 4209 \ 4200$ $0 \ 218 \ 420$ $0 \ 218 \ 420$ $0 \ 173 \ $	7890101234567890012346789001234567890 110123456789001234678900123456780	1 2222233333333333334444444444555555555 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 10 11 10 13 4 5 6 7 3 9 10 11 2 3 4 5 6 8 9 10 11 10 12 3 4 5 6 7 8 9 10 11 1 1 2 3 4 5 6 7 8 9 10 11 1 1 1 1 1 1 2 5 4 5 6 7 8 9 10 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000011111111111222222222333333333333333	$\begin{array}{c} 142\\ 228\\ 341\\ 327\\ 351\\ 351\\ 351\\ 351\\ 351\\ 351\\ 351\\ 351$	27 108 422 88 517 141 50 528 405 528 405 528 533 545 50 50 50 50 50 50 50 50 50 5	201234 1234567890111234567890 10123 45	677777 = 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3	11 87 647 33 32 37 308 59 95 100 183 71 859 95 100 183 71 859 95 100 183 71 859 95 100 183 71 183 859 95 100 183 757 105 89 97 11	7 837 67 837 67 85 7 85 7 85 7 85 7 85 7 10 8 9 3 6 6 7 4 7 18 7 10 8 9 3 6 6 7 4 7 18 7 10 8 9 3 6 6 7 4 7 18 7 10 8 9 3 6 6 7 4 7 18 7 10 8 9 3 6 7 18 7 10 8 9 3 6 6 7 18 7 10 8 9 3 6 6 7 18 7 10 8 9 3 6 7 18 8 9 3 6 7 18 7 10 8 9 3 6 7 18 7 10 10 10 10 10 10 10 10 10 10 10 10 10 1	1234560123 012356789010123456789010 110123456789010	6666667777 = 0000000000011111111111111111	$\begin{array}{c} 10\\ 10\\ 10\\ 8\\ 9\\ 9\\ 11\\ 1\\ 1\\ 5\\ 9\\ 13\\ 3\\ 7\\ 6\\ 29\\ 3\\ 7\\ 7\\ 6\\ 29\\ 3\\ 8\\ 7\\ 7\\ 7\\ 9\\ 1\\ 3\\ 3\\ 8\\ 7\\ 7\\ 7\\ 7\\ 9\\ 10\\ 2\\ 4\\ 3\\ 1\\ 4\\ 3\\ 6\\ 7\\ 1\\ 7\\ 7\\ 9\\ 10\\ 2\\ 4\\ 3\\ 1\\ 4\\ 3\\ 6\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	5 5 5 7 6 4 1 7 5 8 1 5 8 2 3 4 2 3 4 5 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5	234567801234567801234560123 01 234 58	4444444555555555556666667777 8 11 11 1 1	28 113 10 10 10 10 10 10 10 10 10 10	33 111 75 13 48 9 104 542 42 42 42 42 43 46 42 27 83 958 100 64 42 27 83 958 100 64 44 9 241 72 23 89 241 72 23 89 241 75 75 75 75 75 75 75 75 75 75	7890012345678901234567012345601 2 012	333344444444445555555556666666777 H 000	$\begin{array}{rrrrr} 1 & 0 \\ 3 & 2 \\ 2 & 2 \\ 1 & 0 \\ 7 & 1 \\ 9 \\ 1 & 0 \\$	
0123456789010123456	H = 1 $1 195 22$ $1 131 15$ $1 344 33$ $1 36 8$ $1 66 7$ $1 27 29$ $1 96 8$ $1 66 7$ $1 121 12$ $1 25 2$ $2 350 24$ $2 64 6$ $2 88$ $2 206 21$ $2 51 4$ $2 111 10$	3456701234 8303737245245127167	Х 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	10 0 52 45 52 23 11 13 30 133 42 42 149 22 31 150 402 82 151 30 42 152 22 31 153 30 102 153 30 102 153 39 104 163 100 106	3456780123456780123456	4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 6 6 6 6 6	1792344645536978466185031 75744645536978466185031 78591978466185031	195778374356873596584 17663778378592948 2434 1	7901234567890123456785	3334444444455555555555555	83 19 11 1347 40 857 9 10 445 10 82 2 82 2 845 10 82 2 845 10 845	93622 1400 848325 1544120 67563 8305 45363 8454 45363 8454	234567899001234507589001	222222222233333333333333344	822 500 355 105 102 223 211 1177 223 221 1177 1111 1111 255 205 105 105	7821736398057136912070 7821736398057136912070 11322 1113 11	8 900 101012345678900123456 100123456	1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	'10 666 190 231 15 847 73 866 116 568 49 441 49 866 49 441 49 84 49 24 49 35	2621623345055437870853 2623728245143479313 145143479313	45678900123456678900123	00000000000000000000000000000000000000	87005741 87005741 1750228000 175228000211 350228000211 3511394 41949	

and beryllium atoms are in the symmetry planes y = 1/4and y = 3/4. The bond angles (Cl-Be-Cl = 116.8(2)°; N-Be-N = 100.5(2)°) are typical for tetrahedral distortion. In fact, such distortion is also observed in other beryllium compounds such as Be(CH₃)₂(NC₇H₁₃)₂⁹ and (BeCH₃(C=C-CH₃)N(CH₃)₂)¹⁰. It seems that the chlorine and nitrogen atoms undergo site shifting in order to maintain normal Van der Waals contacts. Indeed, the Cl–N and Cl–Cl distances (3.031(3) Å and 3.369(2) Å, respectively) are similar to those found in NbCl₅(NCH)¹¹, TiCl₄(NCH)¹², VCl₄(NCH)¹³ and NbOCl₃(NCCH₃)¹⁴ (Table VI).

The beryllium-chlorine distances (1.970(4) Å and 1.985(4) Å) are longer than those found in monomeric BeCl₂ $(1.75 \pm 0.02$ Å) by electron diffraction¹⁵. A similar elongation of the Be-Cl bond is also found TABLE IV. (Cont.)

4 2 177 1 5 2 84 8 6 2 164 1 7 2 30 8 2 96 9 9 2 25 10 2 74 1 0 3 195 19 1 3 14	x5 7 2 44 34 8 2 10 58 9 2 39 57 0 3 125 1 56 1 3 125 1 56 2 3 44 74 3 3 50 56 5 .3 1.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 3 29 27 1 3 40 37 2 3 55 55 3 3 46 50 4 3 11 17 0 4 11 19 1 4 43 40 2 4 39 39
2 3 1 10 3 3 165 16 5 3 32 3 6 3 52 3 7 3 10 1 8 3 52 3 9 3 11 1 1 4 24 3 4 107 14 5 4 107 6 4 81 7 4 37 6 4 37 7 5 10 1 5 139 2 5 10 1 5 139	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \pi = 13 $ $ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
3 5 129 5 4 5 24 5 70 6 5 11 7 5 95 0 6 19 1 6 57	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 0 115 115 2 8 0 52 52 3 0 1 57 51 4 1 1 37 39 5 2 1 72 74 6 3 1 49 52 0 4 1 119 121 1 5 1 11 15 3	2 3 10 27 5 3 10 18 5 3 10 8 5 3 11 17 5 3 11 47 6 3 11 409 4 29 29 5 4 28 35	0 0 109 306 1 0 11 6 2 0 131 329 3 0 33 26 0 1 22 19 1 1 3 2 2 1 11 9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$H = 9$ $F_{32} = 1$ $F_{43} = 9$ $F_{32} = 1$ $F_{43} = 1$ $F_{53} =$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 1 11 44 0 2 11 0 1 2 11 3

in the compound $BeClC_5H_5$ (1.839(7) Å)¹⁶. Conversely, the observed N–C triple bond length of 1.131 (3) Å in the nitrile complex is 0.03 Å shorter than in free methyl cyanide¹⁷. As will be seen from the following theoretical consideration of these compounds, such variations can be interpreted in terms of MO calculations of electron distribution in the consituent molecules prior to and following coordination.

Molecular Orbital Calculations

Computational Methods

SCF calculations for the methyl cyanide and cyanogen chloride complexes were carried out by both *ab initio* and CNDO/2 methods. For the latter approximation, the valence atomic orbitals were represented by a Slaterian basis set of simple zeta type. In the *ab initio* treatment, the beryllium atom was described by

TABLE V. Interatomic Distances (Å) and Bond Angles (°) with Standard Deviations σ .

Distances		σ	Angles		σ
Be-Cl(1)	1.985	0.004	Cl(1)–Be–Cl(2)	116.8	0.2
Be-Cl(2)	1.970	0.004	N-Be-N	100.5	0.2
Be-N	1.729	0.003	N-Be-Cl(1)	109.9	0.2
N = C(1)	1.131	0.003	Be-N-C(1)	171.7	0.2
C(1) = C(2) C(1) = C(2)	3.369	0.003	N - C(1) - C(2)	1/8./	0.2
Cl(1)–N	3.031	0.003			
Cl(2)-N	3.032	0.003			
N–N	2.658	0.003			

TABLE VI. Comparison of CI–CI and CI–N Distances Found in Various Coordination Compounds.

CICl (Å)	Cl-N (Å)		
3.34	3.04		
3.33	3.05		
3.30	2.98		
3.45	3.08		
3.37	3.03		
	CI-CI (Å) 3.34 3.33 3.30 3.45 3.37		

a 7s Gaussian basis set contracted in $(4s)^{18}$ and modified by addition of a 2p function with the orbital exponent 0.7. A (7s, 3p) basis contracted in (2s, 1p) was used for the carbon and nitrogen atoms, with a (10s, 6p) basis contracted in (3s, 2p) and a (3s) basis contracted in (1s)¹⁹ for the chlorine and hydrogen atoms respectively.

Theoretical Consideration of the Ligand Molecules

Ab initio optimization of the Be–Cl bond length in monomeric beryllium chloride led to a value of 1.79 Å, in satisfactory agreement with the experimentally determined value¹⁵. The corresponding total energy calculated for BeCl₂ is -931.819 a.u. for the following ground state:

 $\begin{array}{l} 1\sigma_{\rm g}{}^{+}(-104.192), \ 1\sigma_{\mu}{}^{+}(-104.192), \ 2\sigma_{\rm g}{}^{+}(-10.094), \ 2\sigma_{\mu}{}^{+} \\ (-10.091), \ 3\sigma_{\rm g}{}^{+}(-7.793), \ 3\sigma_{\mu}{}^{+}(-7.792), \ 1\pi_{\mu}(-7.789), \\ 1\pi_{\rm g}(-7.788), \ 4\sigma_{\rm g}{}^{+}(-4.820), \ 5\sigma_{\rm g}{}^{+}(-1.031), \ 4\sigma_{\mu}{}^{+} \\ (-1.025), \ 6\sigma_{\rm g}{}^{+}(-0.530), \ 5\sigma_{\mu}{}^{+}(-0.503), \ 2\pi_{\mu}(-0.466), \\ 2\pi_{\rm g}(-0.448). \end{array}$

In the $5\sigma_g^+$ molecular orbital, the Be–Cl bond (overlap population 0.49 e) is mainly described by interaction of the beryllium 2s orbitals with the chlorine 3s orbitals. For the $6\sigma_g^+$ molecular orbital, the metalhalogen bond involves overlap of 2s and $3p_z$ orbitals in these respective atoms. Overlap of the $2p_x$ and $2p_y$ orbitals of beryllium with the corresponding chlorine orbitals in the $2\pi_{\mu}$ molecular orbital results in a weak π contribution in the halogen. The last occupied molecular orbital $(2\pi_g)$ is essentially composed of 3p atomic orbitals localized on the chlorine atoms. The Mulliken population analysis (Table VII) indicates that the beryllium atom has a relatively high positive charge (1.12 e). This charge arises from the transfer of 1.40 e from the beryllium 2s orbital to the chlorine atoms, accompanied by a back-donation of 0.24 e from these atoms to the unoccupied $2p_{\sigma}$ orbital of beryllium. On the other hand, the contribution represented by transfer towards the beryllium $2p_{\pi}$ orbitals is very small (0.06 e).

The CNDO/2 description of the various valence orbitals gives rise to the following ground state:: $1\sigma_{\mu}^{+}(-1.180), \quad 1\sigma_{e}^{+}(-1.142), \quad 2\sigma_{\mu}^{+}(-0.679), \quad 2\sigma_{e}^{+}$

 10_{μ} (-1.180), 10_{g} (-1.142), 20_{μ} (-0.079), 20_{g} (-0.649) $1\pi_{\mu}(-0.640)$, $1\pi_{g}(-0.552)$.

As in the case of the non-empirical calculation, the two occupied molecular orbitals $1\pi_{\mu}$ and $1\pi_{g}$ are respectively associated with a Be–Cl π bond and atomic orbitals localized on the chlorine atoms. The σ -type molecular orbitals differ from those obtained by ab initio in that they involve a greater degree of participation of the 2p atomic orbitals of beryllium. It is noteworthy that the electron transfer from the beryllium 2s orbital to the chlorine atoms is virtually identical to that required by ab initio (1.40 e). Conversely, the back-donation from chlorine to the beryllium 2p orbitals involves both σ and π contributions, with the result that the residual charges on the remaining atoms of the molecule are very weak. Accordingly, it would appear that the CNDO/2 treatment overestimates the bonding contribution of the vacant 2p orbitals of the beryllium.

The *ab intio* calculation of the electronic structure of the methyl cyanide molecule is not anomalous, and differs from the CNDO/2 calculation only in that the latter method predicts a weak charge on the methyl carbon atom (Table VIII). This shortcoming arises from the inadequate description of the hydrogen atoms by CNDO.

Theoretical Study of the Complexes

The geometry considered in the various LCAO-MO calculations corresponds to the structure determined

TABLE VII. Calculated Electronic Structure of BeCl₂.

		Ab Initio	CNDO/2
	2s	0.611	0.676
Be	$2\mathbf{p}_{\mathbf{r}}$	0.238	0.768
	$2p_{\pi}$	0.062	0.540
	q	1.12	0.102
	3s	1.941	1.863
	3pg	1.666	1.208
Cl	$3p_{\pi}$	4.00	3.688
	3d,	_	0.206
	$3d_{\pi}$	-	0.040
	q	-0.56	-0.01

TABLE VIII. Calculated Electronic Structure of CH_3CN and ClCN.

		CH ₃ CN ab initio	CH ₃ CN CNDO/2	CICN CNDO/2
	2s	1.695	1.647	1.649
Ν	$2p_{\sigma}$	1.460	1.343	1.346
	$2\mathbf{p}_{\pi}$	2.030	2.170	2.080
	q	-0.18	-0.16	-0.07
	2s	0.919	1.084	1.090
C_1	$2p_{\sigma}$	0.995	0.947	0.952
	$2p_{\pi}$	1.995	1.880	1.884
	q	0.10	0.09	0.07
	2s	1.235	1.003	_
C_2	$2\mathbf{p}_{\mathbf{r}}$	1.003	1.037	
-	$2p_{\pi}$	2.431	1.978	_
	q	-0.66	-0.02	-
	3s	_	_	1.892
	$3p_{r}$	_	_	0.844
Cl	$3p_{\pi}$	-	_	3.916
	3d,	_	_	0.226
	$3d_{\pi}$	-	_	0.116
	q	_	-	0.01
н	1s	0.754	0.969	_
	q	0.25	0.03	-

by X-ray analysis for $BeCl_2(NCCH_3)_2$ and is represented by the point group C_{2v} (Figure 3). In view of the number of atoms contained in the methyl cyanide complex, no geometrical optimization was carried out for this molecule by *ab initio*. However, the CNDO/2 method was applied to both the methyl cyanide and the cyanogen chloride adducts in the optimization of distances and angles for the four bonds connected with the beryllium atom (Table IX).

It is evident from the CNDO energy minimization calculations for the two complexes that the respective Be–Cl and Be–N bond lengths remain virtually unchanged when the nitrile chlorine atoms are formally replaced by methyl groups. On the other hand, it is

Figure 3. Configuration and system of axes for $BeCl_2(NCR)_2$ (R = CH₃, Cl).

found that the N–Be–N bond angle in $BeCl_2(NCCl)_2$ is of the order of 9°±1 smaller than that of a $BeCl_2$ (NCCH₃)₂ molecule with corresponding geometry (respectively equivalent interatomic distances and linear Be–N–C–R bonds). The difference thus observed in the angle formed by the nitrile ligands with the metal atom is not appreciably changed when allowance is made for the experimentally determined non-linearity of the Be–N–C–C bond system (Table IX).

A general description of the ground state of $BeCl_2$ (NCCH₃)₂ as calculated by *ab initio* is presented in Table X.

The last occupied MO's $(17a_1, 11b_2, 4a_2 \text{ and } 9b_1)$ are composed entirely of 3p atomic orbitals localized on the chlorine atoms; the $15a_1$, $7b_1$, $3a_2$ and $10b_2$ MO's represent the CH₃CN ligands. The interactions described by the $11a_1$ (2s (Be), 3s Cl)) and $16a_1$ (2s (Be), 3s (Cl), $3p_x$ (Cl)) MO's account mainly for the Be–Cl bonds, and the MO's denoted by $11a_1$ (2s (Be), 2s (N), $2p_z$ (N)), $13a_1$ ($2p_z$ (Be), 2s (N), $2p_z$ (N), $2p_z$ (Cl)) and $8b_2$ ($2p_y$ (Be), 2s (N), $2p_y$ (N), $2p_y$ (Cl)) are characteristic for the Be–N bonds.

The CNDO/2 calculation for the methyl cyanide complex leads to the following representation of the ground state:

TABLE IX. CNDO/2 Optimization of Be-Cl and Be-N Bonds in the Molecules BeCl₂(NCR)₂.

Compound		d _{Be-C1} (Å)	d _{Be-N} (Å)	Cl–Be–Cl	N-Be-N	
BeCl ₂ (NCCl) ₂		1.85	1.51	126°	120°	
BeCl ₂ (NCCH ₃) ₂	a b c	1.85 1.85 1.985 1.970	1.52 1.51 1.729	123° 123° 116.8°	128.5° 130° 100.5°	

^a Calculations based on the geometry computed for BeCl₂(NCCl)₂ (linear Be–N–C–R bonds). ^bCalculations based on the results of X-ray structural analysis (non-linear Be–N–C–R bonds). ^c Values found by X-ray structural determination.

Symme-	Energy (a.u.)	Overlap population					Type of Atomic Orbital	
try		Be-N ₁	Be–Cl	N ₁ -C ₁	C ₁ C ₂	C ₂ H		
9b ₁	-0.303	_		_	_	_	$3p_x(Cl), 3p_z(Cl)$	
4a ₂	-0.318		_	-	_	-	$3p_{y}(Cl)$	
11b ₂	-0.326	_	-	-	-	_	$3p_z(Cl)$	
17a1	-0.328	0.009	0.013	-0.003	_	_	$3p_z(Cl), 3p_x(Cl)$	
8b1	-0.351	-	0.055	_	-0.002	-	$2p_x(Be), 3p_x(Cl), 3p_z(Cl)$	
16a ₁	0.394	-0.037	0.155	-0.005	_	_	$2s(Be), 3p_x(Cl), 3s(Cl)$	
10b ₂	-0.610	_	_	0.228	-0.106	0.089	$2p_{v}(N), 2p_{v}(C_{1})$	
3a ₂	-0.618	-	_	0.217	-0.105	_	$2p_{x}(N), 2p_{x}(C_{1})$	
7b ₁	-0.625	0.002		0.203	-0.103	_	$2p_x(N), 2p_x(C_1), 2p_x(C_2)$	
15a ₁	-0.630	0.002	-	0.188	-0.103	0.109	$2p_{z}(N), 2p_{z}(C_{1}), 2p_{z}(C_{2}), 1s(H)$	
9b ₂	-0.735	0.009	-	0.003	0.077	0.179	$1s(H), 2p_v(C_2)$	
2a ₂	-0.732	-	-	0.057	0.098	_	$2p_x(N), 2p_x(C_1), 2p_x(C_2)$	
14a ₁	-0.739	0.003	_	0.048	0.097	0.123	$2p_{y}(C_{1}), 2p_{z}(C_{2}), 1s(H)$	
6b ₁	-0.739	0.002	_	0.061	0.098	_	$2p_{y}(N), 2p_{z}(C_{1}), 2p_{z}(C_{2})$	
8b ₂	-0.741	0.024	-	-0.078	0.057	_	$2p_{v}(Be), 2s(N), 2p_{v}(N), 2p_{v}(C_{1})$	
13a1	-0.773	0.028	-	-0.061	0.076	0.075	$2p_z(Be), 2s(N), 2p_z(N), 2p_z(C_1),$	
76	0.916	0.000		0.020	0.070	0.077	$2p_{z}(C_{2})$	
/D ₂	-0.810	0.009	-	0.029	0.079	0.066	$2s(N), 2s(C_1), 2p_2(C_2)$	
$12a_1$	-0.832	-	0.014	0.019	0.038	0.031	$2s(N), 3s(Cl), 2p_z(C_2), 2s(C_1)$	
50 ₁	-0.860	-	0.017	-	-	-	$3s(CI), 2p_x(Be)$	
11a ₁	-0.900	0.064	0.134	-	-	-	$2s(Be), 3s(Cl), 2s(N), 2p_z(N)$	
0D ₂	-1.158	_	-	0.021	0.254	0.054	$2s(C_1), 2s(C_2)$	
10a ₁	-1.159	-	-	0.020	0.254	0.054	$2s(C_1), 2s(C_2)$	
50 ₂	-1.396	-	_	0.395	0.011		$2s(N), 2s(C_1)$	
9a ₁	-1.405	_		0.408	0.011	-	$2s(N), 2s(C_1)$	
8a ₁	-4./16		-	_	-	-	Is(Be)	
/a ₁	-/.614	-	-	-	-	-	$2p_z(Cl)$	
4b ₂	-7.615	-	-	-	-		$2p_y(Cl)$	
	-7.615		-	-	-	-	$2p_y(Cl)$	
4b ₁	-7.615		_	_	-		$2p_x(Cl), 2p_z(Cl)$	
3b ₁	-/.61/	_	-	-	-		$2p_x(Cl), 2p_z(Cl)$	
6a ₁	-/.618	-		-	-	-	$2p_x(Cl), 2p_z(Cl)$	
2b ₁	-9.916	-	-		-		2s(Cl)	
Sa ₁	-9.920	-	-	_	-	_	2s(Cl)	
4a ₁	-11.514	-	-	-		-	$ls(C_2)$	
3b ₂	-11.514	-	-	-	-	-	$1s(C_2)$	
2b ₂	-11.599	-	-		-	-	$1s(C_1)$	
3a1	-11.599	-	-	-	-	-	$1s(C_1)$	
1b ₂	-15.781	-	-	-			1s(N)	
2a ₁	-15.781		-	-	-	-	1s(N)	
lb ₁	-104.004		-	-	-	-	1s(Cl)	
1a ₁	-104.005	-	-	-	-	-	1s(Cl)	

TABLE X. Ab initio Calculation of the Ground State of BeCl₂(NCCH₃)₂.

The structure of this ground state is closely similar to that calculated by *ab initio*. Thus, the last occupied MO's are specific for the chlorine atoms, followed by MO's which correspond exclusively to the nitrile ligands. As in the preceding case with free beryllium chloride, it is seen that the CNDO/2 calculation overestimates the role played by the bcryllium 2p orbitals. However, the main difference between the electronic structures calculated by the two methods (Table XI) lies in the description of the coordinate bonds formed by the nitrile ligands with the beryllium atom. In *ab initio*, the formation of these coordinate linkages corresponds to a transfer of 0.25 e from each nitrogen atom to the beryllium. The overlap population in the Be–N bonds is then 0.07 e. The contributions of the nitrogen 2s and $2p_{\sigma}$ orbitals to this transfer are practically equivalent (0.10 and 0.15 e, respectively). The charge on the nitrile carbon atoms of the methyl cyanide ligands increases from 0.10 e in the free compound to 0.23 e in the complex, owing to the fact that coordination of the nitrogen atom is accompanied by a transfer of 0.19 e along the N–C₁–C₂ π bond system

Structure of BeCl₂(NCCH₃)₂

		BeCl ₂ (NCCH ₃) ₂ by ab initio	BeCl ₂ (NCCH ₃) ₂ by CNDO/2	BeCl ₂ (NCCl) ₂ by CNDO/2
1. August 1. Aug		0.468	0.563	0.577
	2p.	0.129	0.774	0.785
Be	$2p_{y}$	0.061	0.465	0.462
	2p,	0.089	0.581	0.592
	q	1.28	-0.38	-0.42
	3s	1.938	1.890	1.891
	3px	1.844	1.252	1.204
	3p _y	1.992	1.974	1.968
Cl ₁	3pz	1.933	1.837	1.846
	$3d_z^2$	-	0.018	0.021
	3d _{xz}	-	0.130	0.122
	3d _{yz}	-	0.011	0.010
	$3d_{x^2-y^2}$	-	0.125	0.129
	3d _{xy}		0.016	0.015
	q	-0.69	-0.25	-0.21
	25	1.597	1.322	1.339
	2p _x	1.117	1.092	1.048
N ₁	$2p_y$	1.315	1.247	1.242
	2pz	1.306	1.181	1.137
	q	-0.33	0.16	0.23
	2s	0.911	1.074	1.091
	$2p_x$	0.919	0.949	0.959
C1	$2\mathbf{p}_{\mathbf{y}}$	0.965	0.937	0.945
	2pz	0.980	0.891	0.900
	q	0.23	0.15	0.11
	2s	1.238	1.003	
	2p _x	1.238	1.007	-
C ₂	2py	1.131	1.010	-
	2pz	1.082	1.008	-
	q	-0.68	-0.03	~
	3s	_	_	1.894
	3p _x	_	_	1.952
	3py	-	-	1.074
	3p _z	_	_	1.651
	$3d_z^2$	_	_	0.033
Cl ₃	3d _{xz}	_	_	0.017
	3dyz	—	-	0.144
	$3d_{x^2-y^2}$	_	-	0.105
	3d _{xy}	_	_	0.048
	q	_	_	0.08
H1	1s	0.717(0.727)	0.939(0.946)	-
(H ₂)	q	0.28 (0.27)	0.06 (0.05)	-

TABLE XI. Calculated Electronic Structure of BeCl₂(NCCH₃)₂ and BeCl₂(NCCl)₂.

towards the 2p orbitals of the nitrogen. Accordingly, the overlap population of the multiple C-N bond increases from 1.64 e in the non-coordinated nitrile to 1.74 e in the complex. However, this transfer in itself does not account for the gain of 0.39 e observed in the nitrogen $2p_{\pi}$ orbitals of the coordinated nitrile, and it must be assumed that a back-donation of the order

of 0.19 e occurs from the beryllium atom towards the nitrile ligand. The calculated electron distribution pattern further indicates that the lone pair on the nitrogen atom remains essentially localized, with the result that the Be–N bond has appreciable ionic character.

In the semi-empirical model, the electron transfer from nitrogen to beryllium is approximately 0.45 e

(the resultant of 0.32 e and 0.13 e from the nitrogen 2s and $2p_{\sigma}$ orbitals respectively), and this is considerably higher than the transfer predicted by *ab initio*. Moreover, π -transfer from the C–N bond is practically negligible. On the other hand, the Be \rightarrow N back-donation (≈ 0.14 e) is of the same order of magnitude as that determined by *ab initio*.

According to the ab initio treatment, formation of the complex is accompanied by a transfer of 0.13 e from the beryllium atom to each of the chlorine atoms in the BeCl₂ moiety. As a result, the charge on these halogen atoms increases from -0.56 e in non-coordinated triatomic $BeCl_2$ to -0.69 e in the complex. The overlap population of the Be-Cl bond decreases significantly on coordination, *i.e.*, 0.49 e in BeCl₂ as opposed to 0.37 e in the complex. An increase in the polarity of the Be-Cl bonds is also revealed by the CNDO/2 calculation. This increase both in the π character of the carbon-nitrogen triple bond and in the polarity of the metal-halogen bond following formation of the adduct are in excellent agreement with the shortening of the carbon-nitrogen bonds and the lengthening of the beryllium-chlorine bonds shown by the X-ray study of the methyl cyanide complex^{11, 14, 20}.

Theoretical consideration of the molecule $BeCl_2$ (NCCl)₂ was limited to the CNDO/2 method. The calculated electronic structure is closely similar to that found in the same manner for the acetonitrile complex (Table XI).

Conclusion

It would appear from the foregoing study that both semi-empirical and ab initio molecular orbital techniques as applied to the description of simple molecular coordination complexes of the type BeCl₂(NCR)₂ account satisfactorily for variations in certain bonding relationships such as interatomic distances or polar character. Although it is evident that calculated values of orbital contributions and electron transfers will differ appreciably according to the method used, the differences found in the present case are seen to lie in the degree rather than in the form of the interpretation provided. A more marked discrepancy occurs between the computed and experimentally determined bond angles formed by the ligand atoms with beryllium. This is understandable from the nature of the approximations inherent in the semi-empirical method and from the

Acknowledgements

The authors express their thanks to the *Centre de Calcul*, Strasbourg-Cronenbourg for use of a Univac 1110 computer, and to the *Centre National de la Re-cherche Scientifique* for financial support.

References

- 1 R. Fricke and F. Ruschhaupt, Z. anorg. Chem., 146, 103 (1925).
- 2 J. MacCordick, C. R. Acad. Sci., Ser. C, 278, 1177 (1974).
- 3 J.-J. Bonnet and Y. Jeannin, Bull. Soc. Fr. Minéral. Cristallog., 93, 287 (1970).
- 4 E.R. Howells, D.C. Phillips and D. Rogers, Acta Crystallogr., 3, 210 (1950).
- 5 F. Foster and A. Hargreaves, *Acta Crystallogr.*, 16, 1124 (1963).
- 6 W.R. Busing, K.O. Martin and H.A. Levy, Report ORNL, TM305, Oak Ridge, Tennessee (1962).
- 7 D.T. Cromer and J.T. Waber, Acta Crystallogr., 18, 104 (1965).
- 8 A.C. Larson and D.T. Cromer, *Acta Crystallogr.*, 27, 1875 (1971).
- 9 C.D. Whitt and J.L. Atwood, J. Organometal. Chem., 32, 17 (1971).
- 10 B. Morosini and J. Howatson, J. Organometal. Chem., 29, 7 (1971).
- 11 C. Chavant, G. Constant, Y. Jeannin and R. Morancho, *Acta Crystallogr.*, in the press.
- 12 G. Constant, J.-C. Daran and Y. Jeannin, Acta Crystallogr., Sect. B, 27, 2388 (1971).
- 13 G. Constant, J.-C. Daran, Y. Jeannin and R. Morancho, J. Coord. Chem., 2, 303 (1973).
- 14 C. Chavant, J.-C. Daran, Y. Jeannin, G. Constant and R. Morancho, *Acta Crystallogr.*, in the press.
- 15 P.A. Akishin and V.P. Spiridonov, Kristallografiya, 2, 475 (1969).
- 16 A. Drew and A. Haaland, Chem. Commun., 23, 1551 (1971).
- 17 C.C. Costain, J. Chem. Phys., 29, 864 (1958).
- 18 B. Roos and P. Siegbahn, *Theoret. Chim. Acta*, 17, 209 (1970).
- 19 S. Huzinaga, J. Chem. Phys., 42, 1293 (1965).
- 20 G. Constant, J.J. Cubaynes, J.-C. Daran and Y. Jeannin, J. Coord. Chem., 4, 71 (1974).

mena such as site-shifting and crystal field effects.