Metal Ion-Biomolecule Interactions. Part IX. Metal Ion-C₅ Binding in a Pyrimidine Nucleoside. Ready Formation of C₅-Hg-N and C₅-Hg-S Bonds

A. R. NORRIS* and R. KUMAR

Department of Chemistry, Queen's University, Kingston, Ont. K7L 3N6, Canada Received March 22, 1984

Abstract

The reaction of mercuric acetate with N₃-methylmercurated uridine, [CH3Hg(Uri)], yielded a polymeric, dimethyl sulfoxide-soluble compound possessing a regular C-Hg-N bond system. In the presence of 6-thioguanosine, the C-Hg-N bond system was cleaved quantitatively to generate a monomeric species containing an exclusively C-Hg-S bond system. The ¹H, ¹³C and ¹⁹⁹Hg nmr characteristics of the two systems are reported.

Introduction

Of the known nucleoside-derived organometallic compounds, the Hg(II)-containing nucleosides are among the most versatile [1]. They function both as tools for biochemical research as well as valuable synthetic intermediates [2]. The syntheses and properties of 5-mercuripyrimidine nucleosides and nucleotides, as well as mercury(II)-containing polynucleotides, by chemical modification and by enzymatic polymerization of mercurated substrates, have been described [3, 4]. Unlike mercurinucleotides which tend to be water-soluble, the mercurinucleosides are water-insoluble known species. In the case of the complexes of the uracilderived nucleosides, the suggested explanation of this observation is that the complexes are polymeric in nature with a C-Hg-N bonding sequence [5]. There exists, however, no detailed information regarding the regularity of this linkage or the degree of polymerization of the species. This structural uncertainty is not of particular consequence when the derivatives are used as synthetic intermediates but is a distinct limitation when the derivatives are used as biochemical probes.

In the course of our studies of the interactions of CH₃Hg(II) and Hg(II) species with purine/pyrimidine bases, nucleosides and nucleotides [6], we have had occasion to investigate the reactions of in 3 by 6-thioguanosine and the formation of a new complex, 4, containing mercury(II) bridging uridine via the C_5 atom, and 6-thioguanosine via the S_6 atom. Complexes 3 and 4 have been analysed by ¹H, ¹³C and ¹⁹⁹Hg nmr as well as by elemental analysis.

Experimental

that

¹H nmr spectra of the complexes dissolved in (CD₃)₂SO were recorded on a Bruker HX-60 instrument operating at 60 MHz in the Fourier transform mode. ¹³C nmr spectra were recorded on a Bruker CXP-200 instrument operating at 50.307 MHz. Chemical shifts are referenced relative to internal tetramethylsilane (TMS). ¹⁹⁹Hg nmr spectra were recorded on a Bruker CXP-200 instrument operating at 35.830524 MHz. ¹⁹⁹Hg chemical shifts are referenced relative to external neat (CH₃)₂Hg. All spectra were recorded at room temperature (25 ± 2 °C). Microanalyses were performed by Guelph Chemical Laboratories Limited.

Uridine, 1 (Sigma), 6-thioguanosine (Sigma), [(CH₃Hg)₃O]OH (Alfa) and Hg(OAc)₂ (Alfa) were used as received. The N₃-methylmercurated uridine complex, [CH₃Hg(Uri)], 2, was prepared as described elsewhere [6h].

Uridine Complexes

$\left[-Uri-Hg-\cdot 2H_2O\right]_n$, 3

To a hot solution of [CH₃Hg(Uri)], (2) (0.208 g, 0.543 mmol) in 50 ml of distilled water was added dropwise a solution of mercuric(II) acetate (0.0729, 0.227 mmol) in 5 ml of distilled water. After stir-

^{*}Author to whom correspondence should be addressed.

ring the reaction mixture for 5 h at 100 °C, the white solid present in the reaction mixture was collected by filtration, washed with 100 ml of hot water and dried to constant weight in a vacuum desiccator (0.101 g, 97%). Anal. Calcd. for 3 ($C_9H_{14}N_2O_8$ -Hg): C = 22.56; H = 2.92; N = 5.85. Found: C = 23.17; H = 2.64; N = 5.99. ¹H nmr chemical shift data: N₃-H = -- (11.33); C₅-H = -- (5.90d); C₆-H = 7.74s (7.90d). (Values in parentheses are those for 1). ¹³C nmr chemical shift data: C₂ = 154.28 (150.86); C₄ = 169.28 (163.25); C₅ = 123.12 (101.88). C₆ = 146.13 (140.49). (Values in parentheses are those for 1). ¹⁹⁹Hg nmr chemical shift data: -1191 ppm.

(Uri-Hg-6-ThioGuoH)+3H2O, 4

To a stirred solution of 6-thioguanosine (0.058 g, 0.194 mmol) in 15 ml of water was added a suspension of 3 (0.093 g, 0.194 mmol) in 5 ml of water. The thick white precipitate, which formed in the course of stirring the mixture overnight, was collected by filtration, washed with water and dried in a desiccator (0.149 g, 98%). Anal.: Calcd. for 4 $(C_{19}H_{29}N_7O_{12}S Hg): C = 29.23; H = 3.71; N = 12.56.$ Found: C = 29.08; H = 3.17; N = 12.30. ¹H nmr chemical shift data: (a) for the uridine moiety of 4: $N_3-H = 11.32 (11.33); C_5-H = -(5.90d); C_6-H =$ 7.74s (7.90d); (b) for the 6-thioguanosine moiety of 4: N_1 -H = -- (11.97); NH_2 = 6.49 (6.82); C_8 -H = 8.26 (8.15). Values in parentheses are those for uridine, 1, and 6-thioguanosine, respectively. ¹³C nmr chemical shift data: (a) for the uridine moiety of 4: $C_2 = 150.50 (150.86); C_4 = 167.29 (163.25);$ $C_5 = 125.70 (101.88); C_6 = 145.79 (140.49); (b)$ for the 6-thioguanosine moiety of 4: $C_2 = 159.76$ $(153.1); C_4 = 150.79 (147.9); C_8 = 139.04 (138.5);$ $C_5 = 131.86 (128.5).$

Values in brackets are those for uridine, 1, and 6-thioguanosine, respectively. ¹⁹⁹Hg nmr chemical shift data: -883 ppm.

Results and Discussion

Complex 3 could be isolated from the reaction of equimolar mixtures of the N_3 -methylmercurated uridine complex, $[CH_3Hg(Uri)]$, (2), and mercuric acetate in aqueous solution (Scheme 1). The complex obtained in this manner, (3), is soluble in dimethyl sulfoxide, in marked contrast to the dimethyl sulfoxide- and dimethylformamide-insoluble products obtained by the direct reaction of mercuric acetate with uridine itself under comparable conditions in aqueous solution [1].

The ¹H nmr of the mercurated complex 3 shows the absence of a resonance typical of a C_5 -H proton (uridine gives rise to a doublet (J = 6.75 Hz) at 5.90 ppm). The presence in 3 of a sharp singlet at 7.74

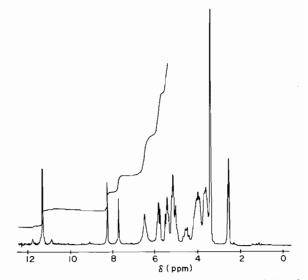
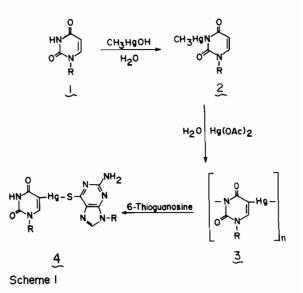



Fig. 1. Proton magnetic resonance spectrum of Uri-Hg-6-ThioGuoH \cdot 3H₂O, 4, in (CD₃)₂SO at 25.0 °C.

ppm, assignable to C₆-H, is in contrast to the doublet at $\delta = 7.90$ ppm (J = 7.92 Hz) observed for uridine. The ¹³C nmr spectrum of 3 showed downfield shifts of all the base carbon resonances, relative to the corresponding resonance in 1, with a dramatic downfield shift of 21.24 ppm in the mercurated C5 resonance. The resonances of the ribose carbon atoms in 3 were not shifted relative to the resonances of the corresponding ribose carbon atoms in uridine. Comparable downfield shifts in the 13 C resonances of the C₈ carbon have been observed in the C₈-methylmercurated complexes of inosine, guanosine, their thio-analogs, 6-thioinosine and 6thioguanosine, and xanthosine [6c,e,g]. While the ¹H and ¹³C nmr data clearly indicate that mercury(II) is bound at C₅ and N₃, they offer no evidence as to whether or not there is a regular C-Hg-N bond sequence. The ¹⁹⁹Hg nmr spectrum of 3 shows a single ¹⁹⁹Hg resonance at -1191 ppm, relative to neat (CH₃)₂Hg, thus confirming the presence of inorganic mercury(II) in a C-Hg-N system. Had complex 3 contained appreciable amounts of C-Hg-C and N-Hg-N bonding, additional ¹⁹⁹Hg resonances near -700 ± 50 ppm (*cf.* -719.18 ppm for the C-bound CH₃Hg(II) in [(CH₃Hg)₃Ino] NO₃) or -1800 ± 100 ppm (*cf.* -1784 for the N-Hg-N sequence in [(thymidine)₂Hg]), would have been observed [6h].

The reaction of 3 with the known antineoplastic agent 6-thioguanosine [8] in aqueous solution gave rise to a quantitative amount of stable product 4 (Scheme 1). The ¹H nmr spectrum of 4 (Fig. 1) shows the resonances associated with the uridine moiety at $\delta = 11.32$ ppm (N₃-H), $\delta = 7.72$ ppm (singlet, C_6-H) and the resonances associated with the 6-thioguanosine moiety at $\delta = 8.26$ and 6.49 ppm for C8-H and NH2 respectively. The trends in the chemical shifts of the C₈-H and NH₂ resonances of the 6-thioguanosine portion of 4 as a result of complex formation are comparable in magnitude to the trends in the ¹H chemical shift values in forming 6-methylmercurated thioguanosine from 6-thioguanosine [6, 9]. The ¹³C nmr spectrum of 4 showed a dramatic downfield shift (23.8 ppm) of the C₅ resonance of the uridine part of 4, as compared to the C₅ resonance in uridine, and an upfield shift (9.3 ppm) of the C_6 resonance in the 6-thioguanosine portion of 4, as compared to the C_6 resonance in 6-thioguanosine. An upfield shift of this magnitude is characteristic of the formation of S-methylmercurated and S-methylated 6-thionucleosides [6g, 9]. There is a single ¹⁹⁹Hg resonance for mercury(II) in 4 at -883 ppm, relative to neat (CH₃)₂Hg. This value is intermediate between the values of δ for mercury(II) in C-Hg-C and S-Hg-S bond systems [6h]. The ¹⁹⁹Hg chemical shift value is thus a useful indicator of the nature of the nucleophiles bound to the mercury atom [10].

Concluding Remarks

We have found in the present study that mercuric acetate rapidly mercurates the N₃-methylmercurated uridine [CH₃Hg(Uri)], (2), at the C₅ position to yield a dimethyl sulfoxide-soluble, polymeric substance, $[-Uri-Hg-\cdot 2H_2O]_n$ (3). Reaction of 3 with 6-thioguanosine in aqueous solution leads to the rapid cleavage of the Hg-N bonds in 3 by 6thioguanosine and the formation of a bridged complex 4 (Hg-S bridging).

The results have significance in biological systems, since thiomercuri derivatives of the type Uri-Hg-SR are acceptable as substrates for RNA polymerase [7]. The instability of 5-alkylthiomercuripyrimidine nucleoside derivatives, where alkylthio = MeS-, EtS-, CH₃COS-, CH₃CSNH and other organic thio derivatives, severely limits their use in studies of DNA replication or transcription. They are apparently demercurated as a result of thiol-catalyzed symmetrization reactions.

While the use of 6-thionucleosides as antineoplastic agents is well known, the demonstration of their ability to form stable complexes of the type represented in 4 suggests they could also have potential as substrates for RNA polymerase and thus be of use in studies of DNA replication and/or transcription.

Acknowledgements

We thank the Natural Sciences and Engineering Research Council for support of this work *via* a Strategic Grant in Environmental Toxicology.

References

- 1 D. E. Bergstrom and J. L. Ruth, J. Am. Chem. Soc., 98, 1587 (1976).
- 2 R. M. K. Dale and D. C. Ward, *Biochem.*, 14, 2458 (1975).
- 3 R. M. K. Dale, D. C. Livingstone and D. C. Ward, Proc. Natl. Acad. Sci, U.S.A., 70, 2238 (1973).
- 4 R. M. K. Dale, E. Martin, D. C. Livingstone and D. C. Ward, *Biochem.*, 14, 2447 (1975).
- 5 D. E. Bergstrom and J. L. Ruth, J. Carbohydrates, Nucleosides, Nucleotides, 4, 257 (1977).
- 6 (a) A. R. Norris, E. Buncel and S. E. Taylor, J. Inorg. Biochem., 16, 279 (1982).
- (b) S. E. Taylor, E. Buncel and A. R. Norris, J. Inorg. Biochem., 15, 131 (1981).
- (c) E. Buncel, A. R. Norris, S. E. Taylor and W. J. Racz, Inorg. Chem., 20, 98 (1981).
- (d) E. Buncel, A. R. Norris, S. E. Taylor and W. J. Racz, *Can. J. Chem.*, 60, 3033 (1982).
- (e) E. Buncel, B. K. Hunter, R. Kumar and A. R. Norris, J. Inorg. Biochem., 20, 171 (1984).
- (f) A. R. Norris, S. E. Taylor, E. Buncel, F. Belanger-Gariepy and A. L. Beauchamp, Can. J. Chem. 61, 1536 (1983).
- (g) E. Buncel, R. Kumar and A. R. Norris, Manuscript submitted for publication.
- (h) A. R. Norris, R. Kumar and E. Buncel, Manuscript submitted for publication.
- 7 C. V. Broeckhoven and R. Wachter, Nucl. Acids Res., 5, 2133 (1978) and reference therein.
- 8 S. Kirschner, Y. Wei, D. Francis and J. G. Bergmann, J. Med. Chem., 9, 369 (1966).
- 9 M. Chenon, R. J. Pugmire, D. M. Grant, R. D. Panzica and L. B. Townsend, J. Am. Chem. Soc., 97, 4635 (1975).
- 10 A. J. Brown, O. W. Howarth and P. Moore, J. Chem. Soc. Dalton, 1589 (1976) and reference therein.