The Photochemical Substitution Reactions of [Mo- $(CO)_{4}(dppe)$ with PF₃, Me₂NPF₂ and MeN(PF₂)₂

GARY ANDOLFATTO, ROBERT GRANGER and LOUIS *Department of Chemistry, Simon Fraser University, Burnaby,*

Department of Chemistry, Simon Fraser University, Burnaby, B.C., V5A 1S6, Canada

Received November 19, 1984

The thermal substitution reactions of $[$ (chelate)- $Mo(CO)₄$] complexes, where 'chelate' = N-N [1-3], P-P $[3-5]$, S-S $[3]$, and N-P $[3]$ bidentate ligands, with various Lewis bases $L = amine$, phosphine and phosphite have been described. These reactions give products, and follow kinetics that depend upon the nature of L and the chelating ligand. The postulated primary steps include: (i) unimolecular dissociation of CO $[6, 7]$, (ii) nucleophilic attack by L on [(chelate) $Mo(CO)₄$] [1, 7], and (iii) reversible dissociation of one end of the chelating ligand [7]. Products of the type $[(chelate)Mo(CO)₃L]$, $[Mo(CO)₄$ reactions.
Local Du $\sum_{i=1}^n$ $\sum_{i=1}^n$ and $\sum_{i=1}^n$ and $\sum_{i=1}^n$ and $\sum_{i=1}^n$ and $\sum_{i=1}^n$

reactions.
In this paper we report our studies of the photochemical reactions of $[(Mo(CO)₄(dppe)]$ with the ligands PF_3 , Me₂NPF₂ and MeN(PF₂)₂, and the isolation of the new compounds $[Mo(PF₃)₄(dppe)],$ $[Mo(Me₂NPF₂)₆]$ and $[Mo(CO)₂(dppe)(MeN(PF₂)₂)$. Comparative studies of the reactions of $P(OMe)_3$ and dppe with $[Mo(CO)₄(dppe)]$ were also done in order to clarify the nature of some of the reaction intermediates.

U_{NOM}

Under thermal conditions, $[Mo(CO)₄(dppe)]$ is $\frac{1}{2}$ that $\frac{1}{2}$ is $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ σ and the substitution σ order to effect substitution σ temperatures that facilitate CO dissociation are required in order to effect substitution $[3, 5]$. Dobson [5] has postulated that strong π -accepting phosphites are better able to compete with CO than Ph₃P, Ph₃Sb and n-octylamine. In these cases the reaction kinetics indicate a reversible, rate-determining dissociation of CO to give a five-coordinate intermediate. On the the give a tive-coordinate intermediate. On the p_1 of n -obtituting and site preference $\begin{bmatrix} 0 \end{bmatrix}$ consider the substitution tions, it is proposed that a CO group cis to dppe is preferentially lost. In studies of the substitution P_{min} and P_{max} and P_{max} and P_{max} and P_{max} and P_{max} (existions of μ o(CO)₄(exist) (existing end man $M_0(C_0)$ $\begin{bmatrix}c_{2}y, & p_{1}\end{bmatrix}$ $\begin{bmatrix}c_{1}y, & c_{2}\end{bmatrix}$ μ_{min} , and μ_{max} σ_{max} σ_{max} characterized [4].
We have examined the reactions of $[Mo(CO)₄$

0020-1693/85/\$3.30

 $Me₂NPF₂$, MeN(PF₂)₂, (MeO)₃P and dppe in solution in THF and in toluene, under photochemical conditions. The progress of the reactions, in pyrex vessels, were monitored by $3^{1}P$ NMR spectroscopy, and by intermittently measuring the amount of evolved carbon monoxide. In all cases, a yellow to amber color rapidly developed, and ^{31}P NMR signals attributable to fac - $[Mo(CO)_{3}(dppe) L]$ appeared. Evidence for the latter was based upon: (i) a doublet $(L =$ $P(OME)_3$) or a doublet of multiplets (L = fluorine containing ligands), slightly upfield relative to δ ³¹P $([Mo(CO)_{4}(dppe)]),$ due to the equivalent ³¹P nuclei of dppe coupled with the spin $1/2$ phosphorus nucleus of the L ligand $(J_{\text{P-P}} \cong 30-35 \text{ Hz})$; and (ii) a signal, downfield from 'free' L, attributable to the coordinated L ligand. This signal, in the cases $L =$ PF_3 and $P(OME)_3$, was split into a triplet by coupling with the equivalent ³¹P nuclei of dppe, the coupling constants $(J \approx 30-35 \text{ Hz})$ being typical for a fac connation [9–11]. The ³¹P NMR spectra of coordinated $Me₂NPF₂$ and $MeN(PF₂)₂$ in $fac-[Mo(CO)₃-$ (dppe)L] showed complex coupling features $[12-14]$ coupling complete In two not satisfied by resorted to provide

coupling constant data.
In two cases, *viz*. $L = Me_2NPF_2$ and $P(OMe)_3$, ³¹P signals attributable to monodentate and to free dppe were also observed, in addition to those due to $[Mo(CO)₃(dppe) L]$. These observations provide direct evidence of the opening of the chelate ring prior to its displacement. In the photolysis of [Mo(CO)_{4} (dppe) and excess dppe, 31 P NMR evidence indicated the initial formation of fac -[Mo(CO)₃(dppe)L] (L = nodentate dnne) achiate apply prior to ring crosare to give $\frac{\text{Cov}_{2}(\text{wppv}_{2})}{\text{Cov}_{2}(\text{wppv}_{2})}$.

non-definition $\frac{1}{2}$ $\frac{1}{$ $\frac{c_1}{s_2}$ corresponding to the coordinated (S $\frac{17}{s_2}$ and H_n) of multiplate nances, as triplets $(J_{\text{P-F}} \approx 1100 \text{ Hz})$ of multiplets corresponding to the coordinated (δ ³¹P = 174 ppm, positions continued (b $\frac{1}{1}$ if ppin,
 $\frac{1}{2}$, and to the free $\frac{1}{2}$, $\frac{3}{10}$, $\frac{1}{11}$ num. $A = 0$) $\frac{1}{2}$ and to the new $(\frac{1}{2} + \frac{1}{2})$ phosphorus centres. The photolysis of $[Mo(CO)]_4$ -
(dppe) and MeN(PF₂)₂ was monitored until \approx 2 equivalents of CO had been collected. The solvent was removed, leaving off-white crystals of $[Mo(CO)₂$. $(dppe)(MeN(PF₂)₂)$. The mass spectrum of this product showed the parent ion $(P(^{98}Mo)_{obs.} = 719$, $P_{\text{calcd}} = 719$) and major species corresponding to the sequential loss of two CO groups, followed by the $\frac{1}{2}$ observed. We have defined. During continued photolysis, a *fat-* to mer-isomeri-(dppe) was observed.
During continued photolysis, a fac- to mer-isomeri-

zation of $[Mo(CO)₃(dppe) L]$ complexes was apparent, as evidenced by (iii) the appearance of two sets of onatheta by (iii) are appearance of two sets of c_1 signals, attributable come quivalent independence one being *trans* and one *cis* to L. The J_{P-P} coupling constants were 130–140 Hz and 30–35 Hz, respec-(dppe)] with various proportions of ligands $L = PF_3$, tively, values that are typical for the assigned con-

© Elsevier Sequoia/Printed in Switzerland

 $d = \frac{1}{2}$ points the latter $\frac{1}{2}$ ppm downfield from downfunction from downfunction from downfunction from downfunction from $\frac{1}{2}$ ppm downfunction from downfunction from downfunction from downfunction from down the 31P signal value of $\frac{3}{4}$ signals of $\frac{3}{4}$ signals of $\frac{3}{4}$, and $\frac{3}{4}$ and downfield, and the latter $1-2$ ppm downfield from $e \rightarrow$ P signals of [MO(CO)₄(uppe)], and (iv), a down- α since of direction and coupling the coupling α of α case $(L = P(OMe)_3)$, this signal was resolved into a doublet of doublets, arising from coupling with the *trans* $(J_{\mathbf{p}-\mathbf{p}} \approx 130 \text{ Hz})$ and the *cis* $(\bar{J}_{\mathbf{p}-\mathbf{p}} \approx 35 \text{ Hz})$ phosphorus nuclei of dppe. The reported derivative *mer*- $[Mo(CO)₃(dppe)(P(OEt)₃)]$, prepared by thermal means, also shows the two sets of $3^{1}P$ signals described in (iii) and (iv) above [10].

In addition to the above noted fac-mer isomerization of $[Mo(CO)_{3}(dppe)L]$ the appearance of signals due to further photolytic substitution products was (PFF - to further photolytic substitution products was
ted. For $I = PF$ - the mixed products $[Mo(CO)]$ red. For $L = r r_3$, the mixed products $[MO(CO)]x$ $(PF_3)_{4-x}$ (dppe)] were observed but were not separated. Accordingly a mixture of $[Mo(CO)₄(dppe)]$ and a 10-fold excess of PF_3 was photolysed (in pyrex) for 20 hours. Most of the $CO (> 90\%)$ was eliminated. Upon removal of the volatile components under vacuum, white crystals of $[Mo(PF_3)_4(dppe)]$, slightly contaminated with $[Mo(CO)(PF₃)₃(dppe)]$, were obtained. The former was purified by recrystallization from dichloromethane. The mass spectrum of $\mu_{\rm g}$ (DE) (domotion conclude to 848 specifilm of to $(1 \tbinom{13}{4} \tbinom{4}{1}$ showed the patent foll $(1 \tbinom{10}{5} \tbinom{10}{6}$ = 848, P_{caled} = 848) and species corresponding to the sequential loss of four PF₃ groups, in patterns consistent with the isotopic constitution of Mo. The base peak corresponded to $Mo(dppe)$. The same base peak was observed in the mass spectrum of $[Mo(CO)₄$. $(dppe)$. The next lower mass fragment corresponded to $Mo(PPh₂)₂$, representing the extrusion of the CH_2CH_2 (Mass = 28) moiety. The ³¹P NMR spectrum of $[Mo(PF_3)_4(dppe)]$ consisted of an upfield multiplet, centred at 52 ppm, due to the equivalent P atoms of dppe, and two downfield quartet sets of multiplets corresponding to the two magnetically distinct pairs of PF_3 groups. On the basis that the ³¹P resonance for the L ligand in mer- $\left[Mo(CO)₃\right]$ (dppe)L] occurs downfield from that of the fac isomer, the signals centered at 158 and at 156 ppm may be assigned to the two pairs of PF_3 ligands that are trans and cis, respectively, to the dppe ligand. Because of numerous spin-spin couplings, all of the above signals were complex and most coupling constants could not be evaluated accurately.

The minor product $[Mo(CO)(PF_3)_3(dppe)]$ showed a weak carbonyl vibration at 1913 cm^{-1} , and a mass spectrum consisting of the parent ion, together with species corresponding to the stepwise loss of three PF_3 groups, followed by the loss of the unique carbon- $\frac{1}{2}$ \mathcal{O} \mathbf{u} \mathbf{p} . The base peak again corresponded to π uppe).
The total ratio of π (complete elimination of complete elimination of π

The photolysis of μ_0 (CO)₄(uppe) and μ_2 NPF₂ $(1:6 \text{ molar ratio})$ lead to the complete elimination of dppe and the formation of an inseparable mixture of products. A sample, which was recrystallized from $CH₂Cl₂/$ hexane, gave a mass spectrum showing the

 $\frac{1}{2}$ and $\frac{1}{2}$ a LOSSES OF MOTOLORS OF ME²NTP₂/51, MOTO*L*₂ $(Me_2NPF_2)_4$ and $(Mo(CO)_3(Me_2NPF_2)_3$. Sequential losses of $Me₂NPF₂$ and CO were evident, and the strongest signal was due to $Mo(Me_2NPF_2)_2$.

A mixture of $[Mo(CO)_6]$ and $Me₂NPF₂$ (1:10 molar ratio) in toluene was photolysed for 15 hours, while evolved CO was removed at intervals. The complex $[Mo(Me₂NPF₂)₆]$ was isolated in high yield $($ > 90%). The mass spectrum of the recrystallized product showed the parent ion $(P(^{98}Mo)_{obs.} = 776$; $P_{\text{caled}} = 776$) and strong signals due to Mo- $(Me₂NPF₂)_x$ (x = 1 – 5). In addition, weak signals corresponding to the loss of one fluorine atom, and to the loss of one Me₂N group from the Mo-
(Me₂NPF₂)_x fragments were observed. The ³¹P NMR spectrum of $[Mo(Me_2NPF_2)_6]$ showed a triplet $(J_{\text{P-F}} = 1080 \text{ Hz})$ of multiplets, centered at 145 ppm.

μ sions μ

The photochemical reaction of $[Mo(CO)₄(dppe)]$ The photochemical reaction of $[mo(CO)_4(\text{upper})]$ (ii) the inguites $L = 113$, mc_2 or 12 , mc_1 c Dobson c $P(OMe)_3$ and dppe initially gives fac - $[Mo(CO)_3$ - $(dppe)L$], in agreement with the findings of Dobson *et al.* [15] that $[Mo(CO)_4(dppe)]$ undergoes substitution via loss of one of the trans pair of carbonyl tution via loss of one of the trains pair of carbonyi bups, the five-coordinate $\left[\text{mod}(C)\right]$ appey mithmediate being square-pyramidal and non-fluxional at ambient temperature. The fac products readily isomerize, under photochemical conditions, to the *mer* configuration. By comparison, fac - $[Mo(CO)$ -- $\sum_{i=1}^{n}$ comparison, \int $\frac{1}{2}$ \int ppe)(Pr_{13}) is stable at loom temperature but $\frac{1110112}{11}$ $(1^{N_1 1}2)$ is stable even at elevated temperatures ω j. The contract ways like ω in the ω

The complexes $\left[\text{mod}(C)/3(\text{upper})\right]$ ieads for the Γ with excess L in two different ways. For $L = PF_3$
and $MeN(PF_2)_2$, carbonyl substitution leads to u MeN(Γ_2), Caloully Substitution reaus to $h(x) = \frac{h(x) - h(y)}{h(y)}$ and $h(y) = \frac{h(y) - h(y)}{h(y)}$ $(MeN(PF₂)₂)$. With $L = Me₂NPF₂$ and $P(OMe)₃$, however, displacement of dppe as well as CO occurred, giving products of the type $[Mo(CO)_x(L)_{6-x}].$ Thus, the first two ligands, which exhibit strong π bonding properties [16], compete only with CO, whereas the strongly σ -donating ligands Me₂NPF₂ and $P(OME)_3$ compete with the *σ*-donating dppe ligand as well. Likewise, in aminemetalcarbonyl complexes, ligand lability increases with increase in basicity of the amine moiety $[2]$.

Acknowledgements

 \mathbb{R}^n I fils work was supported by a NSERC, Canada, Undergraduate Research Scholarship (to R.G.), a Province of British Columbia Youth Employment
Grant (to G.A.) and a NSERC, Canada, Operating Grant (to L.K.P.).

References

- 1 J. R. Graham and R. J. Angelici, J. Am. Chem. Soc., 87, 5590 (1965).
- 2 J. R. Graham and R. J. Angelici, *Inorg. Chem.*, 6, 992 (1967) .
- 3 G. R. Dobson and L. W. Houk, *Inorg. Chim. Acta, 1*, *6, 507 (1972).*
- 4 G. R. Dobson and A. J. Rettenmaier, *Inorg. Chim. Acta*, 6, 507 (1972).
- 5 G. C. Faber and G. R. Dobson, *Inorg. Chim. Acta*, 2, 479 (1968).
- 6 G. R. Dobson and J.-C. Rousche, *J. Organomet. Chem.*, 179, C42 (1979).
- 7 G. R. Dobson, Acc. Chem. Res., 9, 300 (1976).
- J. D. Atwood and T. L. Brown, J. Am. Chem. Soc., 98, 3160 (1976).
-) F. B. Ogilvie, J. M. Jenkins and J. G. Verkade, J. Am. em. So Ogilvie and J. G. Verkade, J. Am. Chem. Soc., 92, 1908 $(1970).$
- S. O. Grim, D. A. Wheatland and P. R. McAllister, *Inorg. Chem.*, 7, 161 (1968).
- J. F. Nixon and J. R. Swain, *J. Chem. Soc., Dalton Trans.*, 1038 (1972).
- C. G. Barlow, R. Jefferson and J. F. Nixon, J. Chem. Soc. A; 2692 (1968).
- G. S. Reddy and R. Schmutzler, *Inorg. Chem.*, 6, 823 **967**). $(1967).$
- 14 R. B. King and T. W. Lee, *Inorg. Chem.*, 21, 319 (1982).
- G. R. Dobson, K. J. Asali, J. L. Marshall a
- 16 R. B. King, Acc. Chem. Res., 13, 243 (1980).