The Photochemical Substitution Reactions of [Mo-(CO)₄(dppe)] with PF₃, Me₂NPF₂ and MeN(PF₂)₂

GARY ANDOLFATTO, ROBERT GRANGER and LOUIS K. PETERSON

Department of Chemistry, Simon Fraser University, Burnaby, B.C., V5A 1S6, Canada

Received November 19, 1984

The thermal substitution reactions of [(chelate)- $Mo(CO)_4$] complexes, where 'chelate' = N-N [1-3], P-P [3-5], S-S [3], and N-P [3] bidentate ligands, with various Lewis bases L = amine, phosphine and phosphite have been described. These reactions give products, and follow kinetics that depend upon the nature of L and the chelating ligand. The postulated primary steps include: (i) unimolecular dissociation of CO [6,7], (ii) nucleophilic attack by L on [(chelate)Mo(CO)_4] [1,7], and (iii) reversible dissociation of one end of the chelating ligand [7]. Products of the type [(chelate)Mo(CO)_3L], [Mo(CO)_4-L_2] and [Mo(CO)_3L_3] have been isolated from these reactions.

In this paper we report our studies of the photochemical reactions of $[(Mo(CO)_4(dppe)]$ with the ligands PF₃, Me₂NPF₂ and MeN(PF₂)₂, and the isolation of the new compounds $[Mo(PF_3)_4(dppe)]$, $[Mo(Me_2NPF_2)_6]$ and $[Mo(CO)_2(dppe)(MeN(PF_2)_2)]$. Comparative studies of the reactions of P(OMe)₃ and dppe with $[Mo(CO)_4(dppe)]$ were also done in order to clarify the nature of some of the reaction intermediates.

Discussion

Under thermal conditions, [Mo(CO)₄(dppe)] is known to resist attack by nucleophiles, and elevated temperatures that facilitate CO dissociation are required in order to effect substitution [3, 5]. Dobson [5] has postulated that strong π -accepting phosphites are better able to compete with CO than Ph₃P, Ph₃Sb and n-octylamine. In these cases the reaction kinetics indicate a reversible, rate-determining dissociation of CO to give a five-coordinate intermediate. On the basis of π -bonding and 'site preference' [8] considerations, it is proposed that a CO group cis to dppe is preferentially lost. In studies of the substitution reactions of $[Mo(CO)_4(P-en)]$ (P-en = H₂PCH₂CH₂-PH₂), products of the type fac- and mer-[Mo(CO)₃-(P-en)L, and $[Mo(CO)_2(P-en)L_2]$ have been characterized [4].

We have examined the reactions of $[Mo(CO)_4$ -(dppe)] with various proportions of ligands $L = PF_3$,

0020-1693/85/\$3.30

Me₂NPF₂, MeN(PF₂)₂, (MeO)₃P and dppe in solution in THF and in toluene, under photochemical conditions. The progress of the reactions, in pyrex vessels, were monitored by ³¹P NMR spectroscopy, and by intermittently measuring the amount of evolved carbon monoxide. In all cases, a yellow to amber color rapidly developed, and ³¹P NMR signals attributable to fac-[Mo(CO)₃(dppe)L] appeared. Evidence for the latter was based upon: (i) a doublet (L = $P(OMe)_3$) or a doublet of multiplets (L = fluorine containing ligands), slightly upfield relative to $\delta^{31}P$ ([Mo(CO)₄(dppe)]), due to the equivalent ³¹P nuclei of dppe coupled with the spin 1/2 phosphorus nucleus of the L ligand $(J_{P-P} \cong 30-35 \text{ Hz})$; and (ii) a signal, downfield from 'free' L, attributable to the coordinated L ligand. This signal, in the cases L =PF₃ and P(OMe)₃, was split into a triplet by coupling with the equivalent ³¹P nuclei of dppe, the coupling constants ($J \approx 30-35$ Hz) being typical for a fac configuration [9–11]. The ³¹P NMR spectra of coordinated Me_2NPF_2 and $MeN(PF_2)_2$ in fac-[Mo(CO)₃-(dppe)L] showed complex coupling features [12-14] which were not sufficiently resolved to provide coupling constant data.

In two cases, viz. $L = Me_2NPF_2$ and $P(OMe)_3$, ³¹P signals attributable to monodentate and to free dppe were also observed, in addition to those due to $[Mo(CO)_3(dppe)L]$. These observations provide direct evidence of the opening of the chelate ring prior to its displacement. In the photolysis of $[Mo(CO)_4(dppe)]$ and excess dppe, ³¹P NMR evidence indicated the initial formation of *fac*- $[Mo(CO)_3(dppe)L]$ (L = monodentate dppe) prior to ring closure to give $[Mo(CO)_2(dppe)_2]$.

The monodentate MeN(PF₂)₂ ligand in fac-[Mo-(CO)₃(dppe)(MeN(PF₂)₂)] showed two ³¹P resonances, as triplets $(J_{P-F} \approx 1100 \text{ Hz})$ of multiplets corresponding to the coordinated (δ ³¹P = 174 ppm, $\Delta = 7$) and to the free (δ ³¹P = 111 ppm, $\Delta = 0$) phosphorus centres. The photolysis of [Mo(CO)₄-(dppe)] and MeN(PF₂)₂ was monitored until ≈ 2 equivalents of CO had been collected. The solvent was removed, leaving off-white crystals of [Mo(CO)₂-(dppe)(MeN(PF₂)₂)]. The mass spectrum of this product showed the parent ion (P(⁹⁸Mo)_{obs} = 719, P_{calcd} = 719) and major species corresponding to the sequential loss of two CO groups, followed by the loss of MeN(PF₂)₂. A very weak signal due to Mo(CO)-(dppe) was observed.

During continued photolysis, a *fac*- to *mer*-isomerization of $[Mo(CO)_3(dppe)L]$ complexes was apparent, as evidenced by (iii) the appearance of two sets of ³¹P signals, attributable to inequivalent P nuclei of dppe, one being *trans* and one *cis* to L. The J_{P-P} coupling constants were 130–140 Hz and 30–35 Hz, respectively, values that are typical for the assigned con-

© Elsevier Sequoia/Printed in Switzerland

figurations [9–11]. The former signal was 8–10 ppm downfield, and the latter 1–2 ppm downfield from the ³¹P signals of [Mo(CO)₄(dppe)]; and (iv), a downfield shift of the ³¹P signal due to the L ligand. In one case (L = P(OMe)₃), this signal was resolved into a doublet of doublets, arising from coupling with the *trans* ($J_{P-P} \approx 130$ Hz) and the *cis* ($J_{P-P} \approx 35$ Hz) phosphorus nuclei of dppe. The reported derivative *mer*-[Mo(CO)₃(dppe)(P(OEt)₃)], prepared by thermal means, also shows the two sets of ³¹P signals described in (iii) and (iv) above [10].

In addition to the above noted fac-mer-isomerization of $[Mo(CO)_3(dppe)L]$ the appearance of signals due to further photolytic substitution products was noted. For $L = PF_3$, the mixed products $[Mo(CO)_x]$ $(PF_3)_{4-x}(dppe)$] were observed but were not separated. Accordingly a mixture of [Mo(CO)₄(dppe)] and a 10-fold excess of PF_3 was photolysed (in pyrex) for 20 hours. Most of the CO (> 90%) was eliminated. Upon removal of the volatile components under vacuum, white crystals of [Mo(PF₃)₄(dppe)], slightly contaminated with $[Mo(CO)(PF_3)_3(dppe)]$, were obtained. The former was purified by recrystallization from dichloromethane. The mass spectrum of $[Mo(PF_3)_4(dppe)]$ showed the parent ion $(P(^{98}Mo)_{obs})$ = 848, P_{calcd} = 848) and species corresponding to the sequential loss of four PF₃ groups, in patterns consistent with the isotopic constitution of Mo. The base peak corresponded to Mo(dppe). The same base peak was observed in the mass spectrum of [Mo(CO)4-(dppe)]. The next lower mass fragment corresponded to $Mo(PPh_2)_2$, representing the extrusion of the CH_2CH_2 (Mass = 28) moiety. The ³¹P NMR spectrum of [Mo(PF₃)₄(dppe)] consisted of an upfield multiplet, centred at 52 ppm, due to the equivalent P atoms of dppe, and two downfield quartet sets of multiplets corresponding to the two magnetically distinct pairs of PF₃ groups. On the basis that the ³¹P resonance for the L ligand in mer-[Mo(CO)₃-(dppe)L] occurs downfield from that of the fac isomer, the signals centered at 158 and at 156 ppm may be assigned to the two pairs of PF_3 ligands that are trans and cis, respectively, to the dppe ligand. Because of numerous spin-spin couplings, all of the above signals were complex and most coupling constants could not be evaluated accurately.

The minor product $[Mo(CO)(PF_3)_3(dppe)]$ showed a weak carbonyl vibration at 1913 cm⁻¹, and a mass spectrum consisting of the parent ion, together with species corresponding to the stepwise loss of three PF₃ groups, followed by the loss of the unique carbonyl group. The base peak again corresponded to Mo(dppe).

The photolysis of $[Mo(CO)_4(dppe)]$ and Me_2NPF_2 (1:6 molar ratio) lead to the complete elimination of dppe and the formation of an inseparable mixture of products. A sample, which was recrystallized from $CH_2Cl_2/hexane$, gave a mass spectrum showing the parent ions of $[Mo(CO)(Me_2NPF_2)_5]$, $[Mo(CO)_2 (Me_2NPF_2)_4]$ and $[Mo(CO)_3(Me_2NPF_2)_3]$. Sequential losses of Me_2NPF_2 and CO were evident, and the strongest signal was due to $Mo(Me_2NPF_2)_2$.

A mixture of $[Mo(CO)_6]$ and Me_2NPF_2 (1:10 molar ratio) in toluene was photolysed for 15 hours, while evolved CO was removed at intervals. The complex $[Mo(Me_2NPF_2)_6]$ was isolated in high yield (> 90%). The mass spectrum of the recrystallized product showed the parent ion $(P(^{98}Mo)_{obs.} = 776;$ $P_{ealed.} = 776)$ and strong signals due to Mo- $(Me_2NPF_2)_x$ (x = 1 – 5). In addition, weak signals corresponding to the loss of one fluorine atom, and to the loss of one Me_2N group from the Mo- $(Me_2NPF_2)_x$ fragments were observed. The ³¹P NMR spectrum of $[Mo(Me_2NPF_2)_6]$ showed a triplet $(J_{P-F} = 1080 \text{ Hz})$ of multiplets, centered at 145 ppm.

Conclusions

The photochemical reaction of $[Mo(CO)_4(dppe)]$ with the ligands $L = PF_3$, Me_2NPF_2 , $MeN(PF_2)_2$, $P(OMe)_3$ and dppe initially gives fac- $[Mo(CO)_3(dppe)L]$, in agreement with the findings of Dobson et al. [15] that $[Mo(CO)_4(dppe)]$ undergoes substitution via loss of one of the trans pair of carbonyl groups, the five-coordinate $[Mo(CO)_3(dppe)]$ intermediate being square-pyramidal and non-fluxional at ambient temperature. The fac products readily isomerize, under photochemical conditions, to the mer configuration. By comparison, fac- $[Mo(CO)_3(dppe)-(Ce_{H_{11}NII_2})]$ is stable at room temperature but isomerizes at 125 °C, whereas fac- $[Mo(CO)_3(dppe)-(Ce_{H_{11}NII_2})]$ is stable even at elevated temperatures [15].

The complexes $[Mo(CO)_3(dppe)L]$ react further with excess L in two different ways. For $L = PF_3$ and $MeN(PF_2)_2$, carbonyl substitution leads to $[Mo(CO)_x(dppe)(PF_3)_{4-x}]$ and $[Mo(CO)_2(dppe)-(MeN(PF_2)_2)]$. With $L = Me_2NPF_2$ and $P(OMe)_3$, however, displacement of dppe as well as CO occurred, giving products of the type $[Mo(CO)_x(L)_{6-x}]$. Thus, the first two ligands, which exhibit strong π bonding properties [16], compete only with CO, whereas the strongly σ -donating ligands Me_2NPF_2 and $P(OMe)_3$ compete with the σ -donating dppe ligand as well. Likewise, in aminemetalcarbonyl complexes, ligand lability increases with increase in basicity of the amine moiety [2].

Acknowledgements

This work was supported by a NSERC, Canada, Undergraduate Research Scholarship (to R.G.), a Province of British Columbia Youth Employment Grant (to G.A.) and a NSERC, Canada, Operating Grant (to L.K.P.).

References

- 1 J. R. Graham and R. J. Angelici, J. Am. Chem. Soc., 87, 5590 (1965).
- 2 J. R. Graham and R. J. Angelici, Inorg. Chem., 6, 992 (1967).
- 3 G. R. Dobson and L. W. Houk, Inorg. Chim. Acta, 1, 287 (1967).
- 4 G. R. Dobson and A. J. Rettenmaier, *Inorg. Chim. Acta*, 6, 507 (1972).
- 5 G. C. Faber and G. R. Dobson, Inorg. Chim. Acta, 2, 479 (1968).
- 6 G. R. Dobson and J.-C. Rousche, J. Organomet. Chem., 179, C42 (1979).
- 7 G. R. Dobson, Acc. Chem. Res., 9, 300 (1976).

- 8 J. D. Atwood and T. L. Brown, J. Am. Chem. Soc., 98, 3160 (1976).
- 9 (a) F. B. Ogilvie, J. M. Jenkins and J. G. Verkade, J. Am. Chem. Soc., 92, 1916 (1970); (b) R. D. Bertrand, F. B. Ogilvie and J. G. Verkade, J. Am. Chem. Soc., 92, 1908 (1970).
- 10 S. O. Grim, D. A. Wheatland and P. R. McAllister, Inorg. Chem., 7, 161 (1968).
- 11 J. F. Nixon and J. R. Swain, J. Chem. Soc., Dalton Trans., 1038 (1972).
- 12 C. G. Barlow, R. Jefferson and J. F. Nixon, J. Chem. Soc. A; 2692 (1968).
- 13 G. S. Reddy and R. Schmutzler, Inorg. Chem., 6, 823 (1967).
- 14 R. B. King and T. W. Lee, Inorg. Chem., 21, 319 (1982).
- 15 G. R. Dobson, K. J. Asali, J. L. Marshall and C. R. McDaniell, J. Am. Chem. Soc., 99, 8100 (1977).
- 16 R. B. King, Acc. Chem. Res., 13, 243 (1980).