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The anion MO& ‘- forms a number of interesting 
bimetallic metal sulfide complexes by acting as a 
bidentate ligand [l] . For example in the series 
M(MoS&‘-_, M can be Zn, Ni, Pd, Pt or Mo=S (the 
latter in the special case of the recently isolated Mo3- 
s92- anion [2]). In the case of Fe-MO-S systems, 
the presence of an Fe-MO-S center in nitrogenase 
has inspired the preparation of the trianion Fe- 
(Mo&)~~- [3, 41. Further, MoSQ2- can serve as 
a bridging group as in MoS4(FeC12)2 [2-5, 61 or as 
a starting material to form clusters such as Mo2- 
Fe,Ss(SR)93- [7]. 

In the series M(Mo&)~~-P-, the species with 
M = Co are notably absent from the literature. Our 
initial efforts to prepare CO(MOS~)~~- led invariably 
to black-grey solid materials insoluble in com- 
mon organic solvents. Failure to prepare a stable 
Co complex with MO&~- was reminiscent of the 
situation first observed with the Fe system. In the 
Fe system, although the dianionic complex Fe- 
(Mo&)?~- was briefly reported [8], MacDonald 
eC al. [3] and Coucouvanis et al. [4] independently 
discovered that the reduced complex, Fe(MoSs)23-, 
could be isolated in stable form. Cyclic voltammetry 
of this compound shows an irreversible oxidation 
wave at -0.075 V vs. SCE, consistent with the failure 
to isolate the dianion Fe(MoS4)22-. Fe(MoS4)23- 
can be regarded as having formally Fe(I) wherein 
Fe(I) to MO&~- charge delocalization presumably 
plays a central role in stabilizing the trianion** 

E91. 
The stability of the trianionic Fe complex sug- 

gested that the trianionic Co complex might also be 
most amenable to synthesis. This is indeed the case. 
Reacting a solution of CoC12 and [N(C2HS),H]- 

*Author to whom correspondence should be addressed. 

**Similar charge delocalization leads to an electron defi- 

cient central metal in the W complex Fe(WS4)22-, and 
results in adduct formation with coordinating solvents such 
as DMF, DMSO or pyridine. See ref. 10. 

0020-1693/85/$3.30 

L17 

I 

Fig. 1. Electronic spectrum of [N(C~H~)~]~CO(MOS~)~ in 

DMF. 

(SCbHS) in CH3CN with a suspension of an MO&~- 
salt in CH3CN provides a simple route to salts of the 
trianion CO(MO&)~ 3- in high yield+. The dark grey- 
green compounds are air-sensitive and decompose 
completely in aerobic solutions within 15 minutes. 
The IR spectrum (KBr pellet of N(C2H5)4+ salt) 
is similar to that of Fe(MoS4)23- [3, 41, showing 
bands at 481(s) cm-‘, 466(s) cm-’ and 445(m) 
cm-‘. The first peak is assigned to a terminal MO-S 
stretching vibration while the last two peaks are 
assigned to bridging MO-S stretching modes. The 
UV-VIS-NIR spectrum in DMF (Fig. 1) displays 
peaks at 825 nm (4,400), 645 nm (6,600), 545 nm 
(5,300), 453 nm(sh) and 394 nm (19,500 M-’ 
cm-‘). The complex is paramagnetic in DMSO solu- 
tion having a magnetic moment of 3.3 B.M. (Evans 
NMR method) [ 111. 

The magnetic susceptibility of [N(C2H5)4] 3- 
CO(MOS~)~ was measured with the Faraday technique 
from 4 K to 300 K in magnetic fields below 6.3 kG. 
After correcting for small ferromagnetic impurity 
contributions and for temperature independent 

‘In a typical preparation, 1.3 ml HSPh and 1.75 ml NQ- 

Hs)3 were added to a suspension of 0.66 g CoCl2 in CH3- 

CN; the resulting dark green solution was added to a sus- 

pension of 4.9 g [N(C2H5)4]2MoS4 in CH3CN. The mixture 

was stirred and a dark green solution resulted. Within 30 

min, the reaction was complete and the solution was filter- 

ed. The product was precipitated by adding diethylether to 

the filtrate. Yields upwards of 70% could be obtained. Anal. 

Calcd. for C~~H~ON~COMOZS~ [N(CzHs)4] 3 [CdMOS4)2] ; 

C, 32.1%; H, 6.73%; N, 4.68%; found: C, 32.3%; H, 6.63%; 

N, 4.55%. 
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Fig. 2. Inverse magnetic susceptibility (x - x0)-’ YS. temper- 

ature for (TEA)3Co(MoS&; x0 is the computed tempera- 

ture independent (diamagnetic) orbital susceptibility. 

diamagnetism (xz;. = -4.49 X 10m7 cm3/gm), the 
inverse susceptibility was plotted vs. temperature 
(Fig. 2). Above about 100 K, the data follow a 
Curie-Weiss law [x = C/(T - 0)] with C = 1.38 X 
10e3 cm3 K/gm, peff = 3.15 ~(n/Co and 0 = -2.2 K 
leading to g = 2.23 assuming S = 1. Departure of the 
data from the Curie-Weiss behavior below 100 K is 
consistent with an axial crystal field splitting of the 
S = 1 triplet ground state; in this case, one expects x 
to follow the relation 

C 
2k,T 

1 _ -;(I -eDlkBT) 

(xVca~c. = 1 2 + e*lkBT (1) 
where D is the usual anisotropy parameter. Analyzing 
the data in Fig. 2 in terms of eqn. (1) yielded a good 
fit with D/kB = 30 K; this corresponds to the non- 
magnetic triplet M, = 0 state being the ground state, 
with the M, = +I levels lying 30 K above it (in zero 
magnetic field). The derived value of C (1.34 X 
10e3 cm3-K/gm) is in good agreement with the value 
obtained above 100 K and leads to peff = 3.10~(~/Co 
and (9) = 2.19. The value for peff is in reasonable 
agreement with the value found from the NMR 
measurements above. If we assume the presence of 
Co(I) (3d8), the magnetic data suggest a tetrahedral 
configuration around the central Co atom. 

The likelihood of a tetrahedral Co in CO(MOS~)~~- 
also finds support in the reported crystal structures 
of the analogs, CO(WS~)~~- [12] and Fe(MoS4)z3- 
[4], where both the Co and Fe were found to be 
tetrahedral. The powder X-ray diffraction pattern 
from [N(C2H5)4] 3 [CO(MO&)~] is nearly identical 
to that of the Fe analog, indicating that these two 
compounds are isomorphous.++ 

‘+The powder X-ray diffraction patterns of [N(C2Hs)4]3- 

CO@foS4)2 and [N(CzHs)4]3Fe(MoS& are practically 
identical with major peaks at (for Co) 28 = 10.27, 10.95, 

17.89 and 18.46” and (for Fe) 28 = 10.55, 11.22, 18.07 and 

18.70” (A = 1.5418 A). 

0 -4 -8 -1 2 -16 -2 0 
E, volts 

Fig. 3. Cyclic voltammogram of [N(C~Hs)4]3Co(MoS4)2 (3 

mM in DMF containing 0.1 M [N(C4H9)4]PFh at 100 mV/ 

set scan rate. The weak redox wave marked by an asterisk 

is attributed to an impurity. 

Cyclic voltammetry of CO(MOS~)~~- in DMF 
shows two reversible waves at -0.44 V and -1.83 V 
(vs. SCE) (Fig. 3). In comparison, the cyclic voltam- 
metry of CO(WS~)~~- shows reversible redox waves 
at -0.52 V and -2.04 V assigned to the 2-/3- and 
3-/4- couples respectively [ 131. In view of previous 
voltammetric trends [2, 13, 141 of M’(MSJ)~~- 
(M = MO, W; M’ = Ni, Pd, Pt, Co, MO = S) complexes, 
we assign the two waves observed in CO(MOS~)~~- 
to the 2-/3- and 3-/4- couples, respectively. In 
Fe(MoS4)23-, the irreversible 2-/3- wave is consis- 
tent with the instability of Fe(MoS4)22-. In contrast, 
the reversible 2-/3- wave in the Co complex sug- 
gests the existence of CO(MOS~)~~- which nonetheless 
has not been isolated in stable form. 

The low formal valence of the central cobalt 
calls attention to the need for a source of reducing 
equivalents in the preparative procedure. For 
example, we have found that either ($-CsH5)Co- 
(CO)2 or CO(SZCN(C~H~)~)~ can serve as the Co 
starting material in the synthesis of CO(MOS~)~~-. 

In using the Co(I) organometallic complex (g’- 

CsH5)Co(C%> no added reductant is required and, 
remarkably, both the CO and cyclopentadienyl 
ligands are displaced by MoSa2-. When the starting 
material contains divalent or trivalent Co, the 
presence of a reducing agent is required. When Co- 
(S2CN(C2H5)2)3, containing Co(III), is used as the 
starting material, the reducing agent S2CN(C2H5)2- 
is released from the Co coordination sphere upon 
substitution by MOSER-. In our preferred preparation, 
C6H5S is added as the reductant for divalent Co with 
oxidation to C6H5S-S&H5 presumed to occur. 
The successful isolation of C~(MOS~)~~- may be a 
further manifestation of the importance of charge 
delocalization from the central metal to MOST*- 
in stabilizing complexes of the type M(MoSQ)~~- 
(n = 2, 3) [9]. 
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Note Added in Proof 

The X-ray crystal structure of [N(C2Hs)4] 
[Ph3PNPh3] 2 [Co(MoS&] has recently been solved 
[ 151. The central Co atom is indeed tetrahedrally 
coordinated confirming the structural assignment 
arrived at in the current note. 
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