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The previously reported graph theoretical model 
of aromaticity in two and three dimensions is used 
to treat homoatomic post-transition element ions 
containing germanium, tin, lead, antimony, bismuth, 
selenium, and tellurium. Localized bonding models 
are sufficient to treat three and seven vertex systems 
as well as 12 skeletal electron trigonal bipymmidal 
five vertex systems such as Sn:, Pb:, and Bir. 
The squares Bii, Se?, and Ter are two-dimensional 
aromatic systems completely analogous to C,J$-. 
Most interesting are the nine vertex systems which 
can be classified into the following three types: (I) 
The 20 skeletal electron Ge$- system which adopts 
the tricapped trigonal prismatic configuration expect- 
ed for a close 2n + 2 skeletal electron system; (2) 
The 22 skeletal electron Geg-, Sns, and Pbs- 
systems which adopt the capped square antiprismatic 
configuration with one non-triangular face expected 
for a nido 2n + 4 skeletal electron system; (3) The 
22 skeletal electron Sip system which is ‘anomalous’ 
since it adopts the &so deltahedral tricapped 
trigonal prismatic configumtion rather than the nido 
capped square antiprismatic configumtion expected 
for a 2n + 4 skeletal electron system. However, the 
trkapped trigonal prism in the 22 electron Sir 
system is more ‘elongated’ than the tricapped tri- 
gonal prisms in 20 skeletal electron nine vertex 
clusters such as B9@, B,H&(CH&, and Ge’,-. 
Detailed graph theoretical calculations show that such 
elongation of the tricapped trigonal prism can lead 
to incomplete overlap of the nine unique internal 
orbitals which generates the two core bonding 
orbitals required to accommodate the four core 
bonding electrons in a 2n + 4 skeletal electron sys 
tern. These calculations also provide an illustration 
of a graph splitting algon’thm for the symmetry 
factoring of gmph characteristic polynomials. 

Introduction 

For more than 100 years certain planar polygonal 
species, of which benzene is the classical example 

[2, 31, have been recognized to have exceptional 
stability, conveniently known as ‘aromaticity’. 
Within the past two decades more recently discovered 
three-dimensional polyhedral cage compounds have 
also been recognized to have exceptional stability: 
examples of the latter class of compounds include 
the dianions B,Hi- (6 G n < 12) [4, 51, carboranes 
CzBpzHn (6 <n < 12) 161, and metal clusters of 
certain types [7, 81. These observations lead 
naturally to the concepts of two-dimensional and 
three-dimensional aromaticity [9, lo] . Extensive 
theoretical work has been done with the objective 
of understanding the three-dimensional aromatic 
systems [ 10-141. Furthermore, a recently report- 
ed [lo] graph theoretical model of three-dimen- 
sional aromaticity demonstrates the close relation- 
ship between aromatic&y in two and three dimen- 
sions. 

Both experimental and theoretical observations 
indicate the following characteristics of structures 
exhibiting the full global delocalization conveniently 
known as three-dimensional aromaticity: (1) A 
structure based on a polyhedron with only triangular 
faces conveniently called a ‘deltahedron’; (2) The 
absence of tetrahedral chambers in the deltahedron; 
(3) The presence of 2n t 2 skeletal electrons where 
n is the number of vertices of the deltahedron. If 
triangular faces or circuits are regarded as closed sur- 
faces and faces or circuits with more than three 
sides are regarded as holes, then structures exhibit- 
ing three-dimensional aromaticity are topologically 
homeomorphic [15] to the sphere in the same sense 
that structures exhibiting two-dimensional aromati- 
city are homeomorphic to the circle. 

The work described in this paper arose from a 
consideration of possible vertex atoms for polyhedral 
molecules exhibiting three-dimensional aromaticity. 
The motivation for the original development of the 
theory of three-dimensional aromatic systems was the 
explanation of the chemistry of certain polyhedral 
species having vertices consisting of carbon (RC), 
boron (RB), and/or middle transition metal moieties 
(i.e., M(CO),, M&H5 units involving the transition 
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metals whose chemistry is primarily influenced by 
the tendency to acquire the favored rare gas electro- 
nic configuration). However, polyhedral species are 
not necessarily confined to these regions of the 
periodic table. For example, numerous homopoly- 
atomic ions of the post-transition elements are now 
known [16]. This paper examines the bonding in 
such ions with particular emphasis on possible 
candidates for systems exhibiting three-dimensional 
aromaticity. In this connection the nine vertex sys- 
tems prove to be of particular interest since certain 
limiting conditions of the previously reported [lo] 
model of three-dimensional aromaticity become 
apparent for the first time. In general the detailed 
discussion in this paper will be limited to species 
whose structures have been unambiguously deter- 
mined by X-ray diffraction in order to have the 
theory on as firm a foundation as possible. 

Background 

[ 10, 18-2 11. Thus consider the 
usual secular equation 

IH-ES1 =0 

in which the energy and overlap matrices can be 
resolved as follows: 

H=aI+flA (2a) 

S=I+SA (2b) 

In equations 2a and 2b I is the unit matrix, a! and /I 
are the Hiickel Coulomb and resonance integrals, 
respectively, and A is the adjacency matrix [22] 
of the graph representing the topology of the system 
defined as follows: 

I 

Oifi=j 

Arj = 1 if i and j are connected by an edge (3) 

0 if i and j are not connected by an edge 

The energy levels of the system can be calculated 
from the following equation: 

atxp 
E=- 

1 +xs (4) 

In this equation x corresponds to the eigenvalues of 
A defined as follows: 

IA-x11 =0 

This treatment thus how energy levels of 
the system can determined from the 
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TABLE I. Comparison of the Bonding in Two-Dimensional and Three-Dimensional Aromatic Systems with n Vertices. 

--- 

Two-Dimensional Aromatic Three-Dimensional Aromatic 
Systems (Polygons) Systems (Deltahedra) 

A) Orbital Hybridizations 
Externala 

Twin Internal 
Unique Internal 

sPz 

sP2 
P 

sP 
P 
sP 

B) Orbital Interactions 
1) Twin Internal 

a) Bonding type 
b) Interaction Topology 

0 

nKz 

Surface 

nKz 
c) Number of bonding orbitals n n 
d) Number of bonding electrons 2n 2n 

2) Unique Internal 
a) Bonding type 
b) Interaction Topology L 

core 

Kn 
c) Number of bonding orbitals odd (2k + 1) 1 
d) Number of bonding electrons 4k + 2 2 

aFor clarity the obvious d orbital participation in transition metal and post-transition element vertices is excluded. 

(1) The overlap of the n unique internal orbitals 
with the topology of the complete graph K, to form 
an n center core bond may be hard to visualize since 
the graphs K, for n > 5 are non-planar by Kura- 
towski’s theorem [24] and therefore cannot corres- 
pond to the l-skeleton [17] of a polyhedron 
realizable in three-dimensional space. However, the 
overlap of these unique internal orbitals does not 
occur along the edges of the deltahedron or those of 
any other three-dimensional polyhedron. For this 
reason, the topology of the overlap of the unique 
internal orbitals in the core bonding of a deltahedral 
cluster need not correspond to a graph representing 
a l-skeleton of a three-dimensional polyhedron. The 
only implication of the K, graph representation of 
the bonding topology of the unique internal orbitals 
is that the deltahedron is topologically homeo- 
morphic [ 151 to the sphere. 

(2) The precise topology of the deltahedron (i.e. 
what pairs of vertices are connected directly by 
edges) thus does not affect directly the graph (namely 
K,) representing the overlap between the unique 
internal orbitals. However, the detailed structure of 
the deltahedron relates directly to the following 
points: (a) The presence of the Hamiltonian circuits 
[lo, 251 required for realizability of the pairwise 
surface bonding of the twin internal orbitals is 
assured by theorems [26] relating the presence of 
Hamiltonian circuits to relationships between 
numbers of vertices and edges which are satisfied for 
all deltahedra; (b) The homeomorphism to the sphere 
required for realizability of the n-center core bond- 

ing is assured by the absence of non-triangular faces 
in deltahedra. 

(3) The equality of the interactions between all 
possible pairs of unique internal orbit& required 
by the K, model for the core bonding is obviously 
a very crude assumption since in any deltahedron 
with five or more vertices all pairwise relationships 
of the vertices are not equivalent. Thus the cis and 
truns vertex pairs in an octahedral cluster such as 
B6Hg- are clearly different. However, the single 
eigenvalue of the K, graph is so strongly positive that 
severe inequalities in the different vertex pair 
relationships are required before the spectrum of 
the graph representing precisely the unique internal 
orbital overlap contains more than one positive 
eigenvalue. In other words, the graph theoretical 
model for three-dimensional aromaticity has a high 
tolerance for distortion before it ceases to predict 
the proper number of skeletal electrons. The nine 
vertex post-transition element clusters examined 
in this paper are significant in that they show how 
much a deltahedron can be distorted before the 
core bonding will generate more than the single 
bonding molecular orbital implied by the K, topo- 
logy. 

Homoatomic Post-Transition Element Clusters with 
Less than Nine Vertices 

This paper surveys the bonding in homoatomic 
clusters of the heavier post-transition elements of 
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fore seems reasonable that rules for the bonding in 
polyhedral boranes, carboranes, and metal clusters 
might also apply to post-transition element clusters 
having group IV and V elements as vertices. 

The following homoatomic post-transition ele- 
ment clusters have been characterized by X-ray 
crystallography: 
(1) Three-atom clusters: 

The three-atom clusters Hgy [30] and Te;- 

[311 are open systems containing no bonding 
features of interest in the context of this paper. 
For example, the species Te:- is isoelectronic with 
tellurium(I1) halides TeX2. 
(2) Four-atom clusters: 

A series of square four-atom clusters are known 
which have 14 skeletal electrons in all cases. Specific 
examples of such clusters are Bii- [32], Se,, [33], 
and Te$ [34]. These species are isoelectronic 
with the cyclobutadiene dianion &Hz- and are 
therefore two-dimensional aromatic systems. In 
these systems eight of the 14 skeletal electrons are 
used for localized two-electron u-bonds along the 
four edges of the square and the remaining six 
skeletal electrons from a delocalized 671 electron sys- 
tem similar to that in the cyclopentadienide ion or 
benzene. 
(3) Five-atom clusters: 

A series of trigonal bipyramidal clusters are known 
which have 12 skeletal electrons in all cases. Specific 
examples of such clusters are Sn:- [35], Pb:- [35] , 
and Bi,“’ [16]. Th ese species are isoelectronic with 
the known [36] carborane CaBaHs and its deriva- 
tives as well as the unknown BsH:- and thus are 
expected to have similar bonding. 

Some specific comments about the bonding in 
these trigonal bipyramidal species are in order since 
most of the literature on this topic can be mislead- 
ing. The original assumption applied to the boron 
polyhedra [46] was that the five-vertex species 

C2BaHs and BsHg-would be stabilized by 
delocalization in a manner similar to their higher 
analogues C2B,?H, (6 < n < 12) and &Hi-. 
However, persistent failures to prepare BsH:- 
suggests that this species is not stabilized to the same 
extent as its higher analogues. Furthermore, a recent 
survey of carborane chemistry [36] suggests that 
C2B3Hs is significantly more chemically reactive than 
the higher carboranes C2BF2H, (6 <n & 12). The 
compelling conclusion from these experimental 
observations is that trigonal bipyramidal clusters 
are not stabilized by delocalization in the same 
manner as deltahedral clusters with six or more 
vertices. 

The lack of delocalization in trigonal bipyramidal 
clusters is consistent with some recent theoretical 
work. Thus in Aihara’s model of three-dimensional 
aromaticity [9] the trigonal bipyramidal system as 
examplified by BsH:- has no resonance energy 

groups IV, V, and VI (i.e. germanium, antimony, 
selenium, and their heavier congeners). Such clusters 
are always ionic. The cationic species generally arise 
by reduction of the chlorides with the free element in 
acidic chlorometallate melts, mainly AlCl, [ 161. 
They are isolated as salts of chlorometallate anions. 
The anionic species [27, 28 ] arise by reduction of the 
free element with an alkali metal in liquid ammonia 
or an amine and can be isolated by complexation 
with cryptate [29] ligands. In contrast to the poly- 
hedral boranes, carboranes, and metal clusters, none 
of the homoatomic post-transition element clusters 
considered in this paper contains any ‘external’ 
groups bonded to the cluster atoms. In other words 
the clusters have the simple stoichiometry Ei where 
E is the post-transition element, n is the number 
of atoms of the element in the cluster, and z is the 
charge on the cluster. 

The rules for counting the number of skeletal 
electrons contributed by each vertex atom can be 
adapted to vertices consisting of post-transition ele- 
ments lacking external groups by the following 
procedure: 

(1) The post-transition elements under considera- 
tion have a total of nine valence orbitals, namely 
one s, three p, and five d orbitals. 

(2) The post-transition elements (in their zero 
oxidation states) have a total of 10 + G valence 
electrons, where G is the group of the periodic table 
where the post-transition element is located. Thus 
germanium, tin, and lead have 10 + 4 = 14 valence 
electrons, antimony and bismuth have 10 t 5 = 15 
valence electrons, and selenium and tellurium have 
10 + 6 = 16 valence electrons. 

(3) If the clusters have either two- or three-dimen- 
sional aromaticity, three orbitals of each vertex atom 
will be required for the internal orbitals (two twin 
internal orbitals and one unique internal orbital). 
This leaves six external orbitals. Each external orbital 
must be filled with an electron pair thereby con- 
suming 2 X 6 = 12 electrons from each vertex atom 
in systems lacking external groups such as those 
under consideration. 

(4) The number of skeletal electrons contributed 
by each vertex atom through its three internal 
orbitals must therefore be 10 + G - 12 = G - 2. 
Application of this rule to the post-transition ele- 
ments of interest indicates that the group IV elements 
germanium, tin, and lead contribute 2 skeletal elec- 
trons, the group V elements antimony and bismuth 
contribute 3 skeletal electrons, and the group VI 
elements selenium and tellurium contribute 4 skeletal 
electrons when they occur as vertices in two- or three- 
dimensional aromatic systems. Thus the group IV 
elements Ge, Sn, and Pb are isoelectronic with BH, 
Fe(CO)s, and CsHsCo vertices and the group V ele- 
ments Sb and Bi are isoelectronic with CH, COG, 
and C5H5Ni vertices in cluster compounds. It there- 
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just like the B4H4 tetrahedral system. Furthermore, 
our previous analysis of three-dimensional 
aromaticity [lo] leads to the conclusion that tetra- 
hedral systems have edge localized bonding and that 
similar localized bonding will prevail in any tetra- 
hedral chambers of more complex polyhedra. Since 
a trigonal bipyramid consists of two tetrahedral 
chambers with a face in common, this theory suggests 
that trigonal bipyramidal clusters have localized 
bonding. 

In view of these considerations the bonding in 
the 12 skeletal electron systems with trigonal bipy- 
ramidal geometry (e.g. CZ Bs H5, Snz-, Pb:-, and 
Bir) can be represented by six localized two-elec- 
tron bonds along the edges of a K2.3 bipartite graph, 
which was recently introduced in connection with 
a discussion of the stereochemical non-rigidity of 
five-coordinate systems [37] . Thus the carborane 
CZB3H5 can be represented by structure I in 
which the two carbon atoms are the normal tetra- 
hedral sp3 type and the boron atoms are the planar 
sp2 type found in trialkylboranes. Analogous loca- 
lized bonding models are possible for the other 12 
skeletal electron trigonal bipyramidal species men- 
tioned above. 

(4) Seven-atom clusters: 
The one well-characterized post-transition ele- 

ment homoatomic seven-atom cluster is Sb;- [38] 
which is isoelectronic and isostructural with P4S3. 
These species have structures II (X = Y = Sb, z = -3 
for Sb:-, and X = P, Y = S, z = 0 for P4S3) which 
can be formulated with nine two-electron localized 
bonds along the edges. Note that in this localized 
cluster the Y atoms may be regarded as having two 
internal and seven external orbitals rather than the 
three internal and six external orbitals required for 
the delocalized clusters. 

The Nine Vertex Clusters 

The preceding section shows that none of the well- 
characterized post-transition element clusters with 
less than nine vertices have three-dimensional 
aromaticity although the square Bi$-, Ser, and 
TeT are clear examples of two-dimensional aromatic 
systems. However, the nine vertex systems introduce 

a variety of new features which extend the previous 
ideas [lo] on three-dimensional aromaticity. 

The following two nine-vertex polyhedra are 
involved in the chemistry of the nine atom family 
[39] : 

(1) The 4,4,4-tricapped trigonal prism (struc- 
ture III) with 21 edges and 14 faces, all of which are 
triangles. This polyhedron is therefore a deltahedron 
which should correspond to a close system with 2n 
+ 2 = 20 skeletal electrons. 

(2) The 4-capped square antiprism (structure IV) 
with 20 edges and 13 faces. One of the faces is square 
and the remaining 12 faces are triangles. This poly- 
hedron therefore has one hole (the square face) 
and thus should correspond to an ‘electron-rich’ 
[lo] nido system with 2n t 4 = 22 skeletal elec- 
trons. 

The nine-vertex homoatomic clusters of the post- 
transition elements fall into the following three 
categories: 

(1) The anion Geg- which has been shown to 
have a 4,4,4-tricapped trigonal prismatic structure 
[40] . Since this system has 9 (4 - 2) t 2 = 20 = 2n + 
2 skeletal electrons, a close deltahedral structure is 
expected for Gei- in accord with what has been 
found. 

(2) The anions E$- (E = Ge [40], Sn [41], and 
Pb [41] ) which have been shown by X-ray diffraction 
to have 4-capped square antiprismatic structures. 
Since these systems have 9 (4 - 2) + 4 = 22 = 2n + 4 
skeletal electrons, a nido polyhedral structure having 
one face with more than three edges is expected in 
accord with what has been found. 

(3) The cation Bi? which has been shown [42] 
to have a 4,4,4-tricapped trigonal prismatic struc- 
ture which is the closed deltahedron expected for a 
system with 2n t 2 = 20 skeletal electrons. However, 
the Sir system has 9 (5 - 2) - 5 = 22 skeletal elec- 
trons leading to the prediction of a nido polyhedron 
with one non-triangular face in contradiction to what 
has been found. 

The Bi”,’ system is thus a case where the simple 
skeletal electron counting rules for three-dimensional 
aromatic systems [lo-141 lead to the prediction 
of an incorrect structure. This section examines pos- 
sible reasons for this discrepancy. 

An initial clue to this anomaly is provided by 
a detailed examination of the geometries of the 
various 4,4,4-tricapped trigonal prismatic clusters. 
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Fig. 1. Application of the graph splitting algorithm for the 
symmetry factoring of the ninth degree characteristic equa- 
tion of the graph representing the overlap of the unique 
internal orbitals in Bi$ . 

The ratio v/h of the prism ‘height’ v (e.g. edges 17, 
28, or 39 in structure III) to the ‘basal edge’ h (e.g. 
edges 12, 23, 31, 78, 89 and 97 in structure III) 
[39] is particularly significant. Thus in the 20 
skeletal electron systems Ge$- (1.03), BaH$- (0.97) 
and B7H7CZ(CH3)2 (0.90) the v/h ratio (given in 
parentheses) is appreciably smaller than that in the 
22 skeletal electron system Sir (1.15). This suggests 
that the extra skeletal electron pair in the Biz 
system arises because its tricapped trigonal prism 
is so stretched out that each of the nine unique 
internal orbitals of the vertex atoms cannot overlap 
with every other such orbital as represented topo- 
logically by the Kg complete graph. More specifi- 
cally the unique internal orbitals of the three atoms 
of the ‘top’ triangular face of the tricapped trigonal 
prism (atoms 1,2, and 3 in structure III) cannot over- 
lap any more with the unique internal orbitals of the 
three atoms of the ‘bottom’ triangular face (atoms 7, 
8, and 9 in structure III). The eigenvalue spectrum 
of this ‘revised’ graph representing ‘incomplete’ 
overlap of the nine unique internal orbitals will now 
be calculated in order to test this hypothesis. 

The relevant graph to represent the interactions 
of the nine unique internal orbitals in the stretched 
out tricapped trigonal prism in Sir is depicted in 
Fig. 1. This graph may be regarded as two fused K6 
graphs, one involving the triad of ‘top’ triangle atoms 
1, 2, and 3, as well as the triad of capping atoms 
4, 5, and 6, and the other involving the triad of 
‘bottom’ triangle atoms 7, 8, and 9 as well as the 

4- 

5- 

6- 

0 I 

6 I I 
I 1 I 

0 0.2 0.4 0.6 0.6 1.0 1.2 1.4 1.6 1.6 

WEIGHTING PARAMETER a 

Fig. 2. Plot of the eigenvalues of the nine vertex graph in 
Fig. 1 as a function of the weighting parameter a represent- 
ing the ratio of intertriad interactions to intratriad inter- 
actions. The doubly degenerate eigenvalues are represented 
by a pair of closely spaced lines. The vertical dashed lines 
enclose the range of the weighting parameter (0.47 < a < 
0.71) where two positive eigenvalues are found. Note that in 
Fig. 2 the positive eigenvalues are in the lower part of the 
ordinate and the negative eigenvalues are in the upper part 
of the ordinate in accord with the energies of the correspond- 
ing molecular orbit&. 

triad 4, 5, and 6. Thus the vertices 4, 5, and 6 are 
common to both Ke graphs and have degree 8 
whereas the remaining six vertices are only contained 
in a single K6 graph and therefore have degrees of 
only 5. Furthermore, a variable parameter a is introd- 
uced which represents the ratios between the intra- 
triad interactions (i.e. those within the triads 123, 
456, and 789) and the intertriad interactions (i.e. 
those between the triads 123 and 456 and between 
the triads 456 and 789). Thus the nine edges 12,23, 
31, 45, 46, 64, 78, 89, and 97 are given weight 1 
and the remaining 18 edges 14, 15, 16, 24, 25, 26, 
34, 35, 36, 47, 57, 67,48, 58,68,49,59, and 69 are 
given weight a. The effective Da,, symmetry of this 
graph is then used to factor its ninth degree char- 
acteristic polynomial into six factors. The graph 
splitting algorithm used to effect this factoring has 
been reported elsewhere [43] and the details of this 
particular case are given in Fig. 1. Note that in this 
case the symmetry factoring process involves two 
stages: 
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BgH$-, BTHTCZ(CHS)Z, and Gef which have the 
2n t 2 = 20 skeletal electrons required by the ideal 
three-dimensional aromaticity model [lo] . A related 
question is why the 22 skeletal electron Sip system 
does not instead acquire the 4-capped square anti- 
prism geometry of the 22 electron Ez- systems 
(E = Ge, Sn, and Pb). In this connection the follow- 
ing two points seem relevant: 

(1) Guggenberger and Muetterties [39] have 
shown that for nine vertex systems (both Mg clusters 
and MLs coordination complexes) the tricapped tri- 
gonal prism III is of lower energy than the capped 
square antiprism IV. 

(2) The high formal positive charge on the BiF 
system relative to the high formal negative charge on 
the Ez- systems makes the unique internal orbitals 
in the Sip system less diffuse than those in the iso- 
electronic Eb systems. The range of overlap of 
the unique internal orbitals in Sir is therefore much 
more restricted than that of the unique internal 
orbitals in the Ef anions. 

These points suggest that the types of geometric 
distortions in polyhedral molecules to accommodate 
electron-rich systems (ie. those with more than 2n + 
2 skeletal electrons) depend upon the electron 
density of the vertex atoms. Most electron-rich sys- 
tems prefer to adopt the structures based on poly- 
hedra with one or more non-triangular faces as exem- 
plified by the nido and arachno compounds. How- 
ever, systems rich in skeletal electrons but with a low 
electron density on the vertex atoms as exemplified 
by Sir may prefer to adopt deltahedral structures 
but with distortions to prevent complete overlap of 
all of the unique internal orbitals. This paper shows 
that the existing theoretical models can accom- 
modate such possibilities. Further work on the struc- 
tures of other post-transition element homoatomic 
cations of high nuclearity is needed to establish the 
generality of such behavior. A particularly interest- 
ing reported [ 161 system is Bi”,’ for which a square 
antiprismatic structure has been suggested but not 
proven. The Bip system has 8 (5 - 2) - 2 = 22 = 2n 
t 6 skeletal electrons. Since a square antiprism has 
three positive eigenvalues (namely [43] 4, fi, and 
fl), a square antiprismatic structure for Bi’,’ can 
be rationalized by a three-dimensional aromaticity 
model modified so that the overlap of the eight 
unique internal orbitals has the topology of the 
square antiprism rather than one or more fused or 
disjoint K, graphs. 

Finally a molecular orbital study in 1964 by Cor- 
bett and Rundle [44] on Bi? should be mentioned. 
These authors were able to rationalize the 22 skeletal 
electrons of Bi”,+ . However, the additional points dis- 
cussed in the present paper are not apparent from 
their much earlier work largely because very little 
was known about nine-vertex clusters or even possible 
polyhedra for such systems in 1964. 

(1) Use of the three-fold rotation axis to split 
the original connected graph into a disconnected 
graph with three components of three vertices each. 
One of these components is unique and is designated 
as G,. The remaining two components are identical 
and are designated as G,. 

(2) Use of the planes of symmetry in both the 
G, and G, components to factor each of the three- 
vertex connected components into a single vertex 
(G, and GA and a pair of connected vertices (Gag 
and Geg). 

The net result of this symmetry factoring process 
is the splitting of the original connected graph with 
nine vertices into a disconnected graph with six com- 
ponents so that the eigenvalues of the disconnected 
graph are the same as those of the original connected 
graph. As a consequence of this procedure only 
quadratic and linear equations need to be solved in 
order to determine all nine eigenvalues of the original 
connected graph. It is therefore feasible to express 
solutions of these equations in terms of the edge 
weighting parameter a using algebra no more com- 
plicated than the ‘quadratic formula’. 

The number of positive eigenvalues of the graph 
in Fig. 1 is directly related to the number of bond- 
ing orbitals arising from overlap of the nine unique 
internal orbitals and thus to the number of skeletal 
electrons in the nine vertex system. Figure 2 plots 
the eigenvalues of this nine vertex graph as a function 
of the weighting parameter a. For values of a less 
than 0.47 (i.e., G/3) the graph has three positive 
eigenvalues, for values of a between 0.47 and 0.71 
(ie., d//2) the graph has two positive eigenvalues, 
and for values greater than 0.71 the graph 
has four positive eigenvalues. Thus in the range 0.47 
< a < 0.7 1 the graph in Fig. 1 has the two positive 
eigenvalues required for the generation of two bond- 
ing orbitals from overlap of the nine unique internal 
orbitals. In this range the core bonding of the nine- 
vertex polyhedron requires 4 skeletal electrons which 
when added to the 2n = 18 skeletal electrons requir- 
ed for the surface bonding in a nine vertex 
polyhedron leads to the 22 skeletal electrons found 
in Bi?. We thus see how stretching out the 4,4,4- 
tricapped trigonal prism deltahedron can destroy 
the perfect nine-center bond of the unique internal 
orbitals so that an additional bonding pair of elec- 
trons is required. In other words a stretched out 
deltahedron with non-triangular faces can mimic in its 
electron count a nido polyhedron with a single non- 
triangular face. 

The above treatment, although obviously very 
crude, shows how the ideal three-dimensional aroma- 
ticity model [lo] can be modified to account for the 
extra skeletal electron pair in Bi? in a manner consis- 
tent with geometrical differences between the tri- 
capped trigonal prism in Bi”,’ and corresponding 
deltahedra in the other nine-vertex systems (e.g. 
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Summary 5 

This paper shows that simple conventional models 
of two- and three-dimensional aromaticity can be 
applied to post-transition element clusters to provide 
reasonable explanations of their structures and elec- 
tron counts. Thus there are no fundamental differ- 
ences in the structure and bonding of post-transition 
element clusters as compared with polyhedral 
boranes, carboranes, and middle transition metal 
clusters. However, the specific post-transition element 
clusters which have been structurally characterized 
permit the extension of known cluster bonding 
models in the following directions: 

(1) Additional examples of 12 skeletal electron 
trigonal bipyramidal clusters in which edge localized 
bonding models are satisfactory. 

(2) The first case in which incomplete overlap of 
the unique internal orbitals in a deltahedron appears 
to occur in a system isoelectronic with a nido system 
(i.e., Bir). This suggests the following areas for 
further experimental work in the field of post-transi- 
tion element clusters: 
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