43

Chemistry of UO_2^{2+} Group. I. Molecular Structure of Dioxo-Dinitratobis (Triphenylarsineoxide)Uranium(VI)

C. Panattoni, R. Graziani, U. Croatto, B. Zarli, and G. Bombierl

Received March 1, 1968

Some uranyl complexes with triphenylphosphine and triphenylarsine oxides as ligands have been reinvestigated. The crystal structure of Dioxo-dinitratobis(triphenylarsineoxide)uranium(VI) has been determined by X-ray diffraction. The crystals are monoclinic with $a = 11.09 \pm 0.04$, $b = 19.28 \pm 0.06$, $c = 10.88 \pm 0.04$ Å, $\beta = 128^{\circ} 10' \pm 10', Z = 2$, space group $P2_1/c$. Intensities of 921 independent reflections were obtained photographically with CuK_a radiation. The structure was solved by three-dimensional Fourier syntheses and refined by was full-matrix least squares. The final R index 8.6%. The uranium atom is octacoordinated with two bidentate nitrate ions and two oxygens from ligands coordinated in the plane perpendicular to the uranyl group.

Introduction

The nature of the bonding in complexes containing the UO_{2⁺⁺} group is still an open problem. The coordination of oxygen-containing ligands permits hexacoordination and sometimes pentacoordination^{1,2} in an equatorial plane. The bonds and the angles in this plane may be strongly influenced by the chemical nature of the ligands.

The series of compounds $UO_2(NO_3)_2X_2$, in which X represents an oxide of triphenylphosphine or triphenylarsine has been intensively studied.3,4,5,6,7 It should be noted that the identical complexes were obtained when the starting materials were triphenylphosphine or triphenylarsine.8.9

The possibility of bidentate nitrate groups in these oxide complexes was suggested by Bullock.6 The present communication describes the crystal structure of the complex Dioxo-dinitratobis(triphenylarsineoxide)uranium(VI).

(1966).

(1900).
(5) B. W. Fitzsimmons, P. Gans, B. Hayton, and B. C. Smith, J. Inorg. Nucl. Chem., 28, 915 (1966).
(6) J. I. Bullock, J. Inorg. Nucl. Chem., 29, 2257 (1967).
(7) B. Zarli and C. Panattoni, J. Inorg. Nucl. Chem. Letters, 3, 111 (1967)

(1967)

(1907).
(8) Some attempt was made to prepare the complex with triphenyl-(8) Some attempt was obtained. However in alcohols as solvents the unaltered starting materials were recovered while in dioxane or ethyl ether some decomposition occurred.
(9) It is not clear whether atmospheric oxygen or the peroxides as impurities or the uranyl nitrate are responsible for the ligand oxidation.

Experimental Section

Reactions of uranyl nitrate hexahydrate with triphenylphosphine. (a) In ethyl ether: a solution (20 ml) of uranyl nitrate hexahydrate (500 mg) and triphenylphosphine (655 mg) immediately deposited at room temperature 304 mg of UO₂(NO₃)₂.2Ph₃PO; yield 32%. (b) In dioxane: a solution (10 ml) of uranyl nitrate hexahydrate (500 mg) and triphenylphosphine (524 mg) was stirred under reflux for 20-30 minutes. 850 mg of complex were collected from the cold solution by adding 100 ml of ethyl ether; yield 90%. (c) In ethanol: a solution (50 ml) of uranyl nitrate hexahydrate (500 mg) and triphenylphosphine (655 mg) was boiled for 30 minutes and then the solvent was evaporated to dryness. Only 47 mg of complex were isolated with a yield of 5%. This yield was increased by a longer reaction time.

Reactions of uranyl nitrate hexahydrate with triphenylarsine. (d) In ethyl ether: uranyl nitrate hexahydrate (500 mg) and triphenylarsine (765 mg) were dissolved in 20 ml of ethyl ether. The resulting solution was stirred for 20 minutes at room temperature; the yellow crystals of UO2(NO3)2.2Ph3AsO slowly appeared; yield 30%. (e) In dioxane: using the procedure under (b) uranyl nitrate hexahydrate (500 mg) and triphenylarsine (612 mg) reacted giving 970 mg of complex; yield 97%. (f) In ethanol: using the procedure under (c) triphenylarsine was found to be inert towards uranyl nitrate. In n-butanol the yield was less than 0.2% and in cyclohexanol was 10%.

Analyses and physical properties of the pure compounds UO2(NO3)2.2Ph3PO and UO2(NO3)2.2Ph3AsO were in very good agreement with literature values.

Anal. Calcd. % for C36H30O10N2P2U C, 45.5; H, 3.2; N, 2.9; U, 25.0. Found % C, 45.9; H, 3.3; N, 3.1; U, 24.8.

Calcd. % for C₃₆H₃₀O₁₀N₂As₂U C, 41.6; H, 2.9; N, 27; U, 22.9. Found % C, 41.2; H, 2.8; N, 2.7; U, 23.3.

From oscillation, Weissenberg and Crystal data. precession photographs the crystal data for $UO_2(NO_3)_2$. $2(C_6H_5)_3$ AsO are as follows: Monoclinic, $a = 11.09 \pm$ $0.04 \text{ Å}, b = 19.28 \pm 0.06 \text{ Å}, c = 10.88 \pm 0.04 \text{ Å},$ $\beta = 128^{\circ} 10' \pm 10', U = 1829 \text{ Å}^3, F(000) = 996,$ $FW = 1038.5, D_m = 1.90 \text{ g.cm}^{-3}, D_x = 1.87 \text{ g.cm}^{-3}$ Absent spectra h0l Z = 2, Space group $P2_1/c$. l=2n+1, 0k0 k=2n+1; $\mu=183$ cm⁻¹ for CuK_a radiation.

⁽¹⁾ E. Frasson, G. Bombieri, and C. Panattoni, Coord. Chem. Rev., 1,

⁽¹⁾ E. Frasson, O. Donibert, and C. Function, coold. Construction (145) (1966).
(2) C. Panattoni, G. Bandoli, R. Graziani, and U. Croatto, Chem. Comm., 5, 278 (1968).
(3) P. Gans and B. C. Smith, J. Chem. Soc., 4172 (1964).
(4) F. A. Hart and J. E. Newbery, J. Inorg. Nucl. Chem., 28, 1336 (1966).

0.9.L 2 794 - 3 999 1 5 833 1.9.L 0 867 - 1 1339 1 -1 1164 1 -2 529 - -3 1229 1 -3 1229 1 -3 1229 1 -3 523 1 -2 593 1 2.9.L 753 1 1 1011 1 -1 1189 1 -2 421 - 3 1022 - 3 1022 -	$\begin{array}{c} 0.6 \ L \\ 2 \ 2006 \ 1 \\ 2 \ 2006 \ 1 \\ 6 \ 1209 \ 8 \ 1057 \ 1 \\ 10.1 \ 2 \ 10.2 \ 1 \ 10.2 \ 1 \\ 2 \ 10.2 \ 1 \ 10.2 \ 1 \\ 2 \ 10.2 \ 10.2 \ 1 \ 10.2 \ 1 \ 10.2 \ 10.$
-760 1115 89% -525 1320 -529 12268 1317 517 518 1010 61% 1040 1357 -308 990	2918 2918 1295 1014 1295 1304 1295 1304 1295 1304 1295 1304 1295 1304 1295 1304 1297 1304 1304 1225 1304 1304 1225 1305 1305 1222 1357 1357 1357 1357 1367 1367 1367 1375 1375 1364 1375 1387
-3 871 -8 815 -5 737 J.9.L 1 1122 2 835 -2 832 -3 930 -3 930 -5 839 -3 1136 -5 1035 -7 540L i 829	$\begin{array}{c} -7 & 1 \\ 0 \\ 0 \\ -1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$
937 -795 876 1176 1048 -803 471 1057 1057 1057 1052 1368 738 1002 819 981	1134 705 -470 4909 4909 4909 4909 4909 4009 6300 751 830 4009 568 407 1104 506 630 701 513 400 506 10 973 10 568 407 506 507 10 507 508 10 507 10 507 10 507 508 10 507 508 10 507 508 10 507 508 10 507 508 10 507 508 10 507 508 10 507 508 10 507 508 10 507 508 10 507 508 10 507 508 10 507 508 10 507 508 10 507 508 10 507 508 508 509 508 10 507 508 508 508 509 508 508 508 508 508 508 508 508 508 508
-1 817 -2 680 -3 1282 -5 1219 -7 1040 -7 1040 -3 983 -5 737 -7 985 -7 985 -3 974 -3 974 -3 974 -3 974 -3 557 0 1101 1 338 2 1263	-3 35% + 906 -5 1736 -5 736 -6 859 -0 11701 -1 610 -2 903 -3 1298 -3 1298 -3 1298 -3 1298 -3 526 -7 8 907 -3 507 -3 1298 -3 1298 -3 1298 -3 1298 -3 577 -3 1298 -6 1379 -3 570 -7 802 -3 570 -7 802 -3 570 -7 802 -7 802 -10 12,2,1,1 -8 508 -8 1120 -8 508 -8 12,2,1 -8 508 - -8 13,2,1 -8 508 - -9 2,3,3,1 -8 508 - -10 12,2,1 -8 508 - -10 12,2,1 -10 12,
932 -588 1863 1292 1031 1170 1178 771 1161 1167 922 743 665 696 -10 1335	345 977 1621 652 10162 -473 11144 499 13717 -621 652 990 13717 -621 10162 -473 11144 4997 13717 13718 13777 567 1385 1398 308 308 308 308 308 308 308 30
 1458 1,12,1 1,16,1 1,363 -1,771 1,484 -2,599 4,778 -4,1082 2,1161 1,02 2,101 1,118 1,118 -3,102,1 3,102,1 3,102,1 5,581 	-3 1550 -3 875 -5 77 -7 1001 -1 1310 -1 130 -1 1100 -1 130 -1 1100 -1 100 -1 100 -1 100 -1 100 -1 100 -1
1135 -521 -522 1616 629 629 1016 1246 1510 485 735 150 485 735 159 -379 762 718 -586	1423 686 639 427 955 746 886 1406 1406 1406 1406 1406 1287 731 1993 1287 794 1287 794 1287 794 1287 794 1287 794 1287 794 1287 794 1286 1297 1287 137 1286 1286 1286 1286 1275 1387 1060 1080 1287 1164 838 206 1175 1080 838 207 106 1087 104 838 207 776 106 1087 104 838 207 776 106 107 776 213 3080 202 107 107 107 104 856 107 776 107 104 856 107 776 106 107 776 106 107 776 1080 206 107 776 1080 207 107 107 104 856 107 776 106 107 104 856 107 776 106 107 107 106 107 776 107 106 107 776 213 3080 202 107 107 107 107 107 107 107 107
2 655 -2 1552 -4 1661 -6 681 -6 681 -3 105 -2 87 -3 306 -3 907 -6 1287 -6 1287 -2 1287 -6 1287 -6 829 -6 10,L -1 1822 -1 182 -1 182	$ \begin{array}{c} \mathbf{x} & 1569 \\ \mathbf{x} & 15127 \\ \mathbf{x} & 1637 \\ \mathbf{x} & 1117 \\ \mathbf{x} & 117 \\ \mathbf{x} & 177 \\ x$
710 1619 1447 896 142 1433 891 395 1030 1453 1324 553 1324 556 512 512 133 1471	1374 2314 2314 2314 2314 2314 2314 2314 2314 2314 2314 2314 2314 2314 2314 2314 2417 2477
$\begin{array}{cccc} -6 & 581 \\ & 7,10,L \\ -2 & 617 \\ -4 & 1077 \\ -6 & 1375 \\ & 6,10,L \\ -2 & 892 \\ -6 & 892 \\ -6 & 892 \\ -6 & 892 \\ -6 & 819 \\ 0,11,L \\ -4 & 819 \\ 0,11,L \\ -4 & 819 \\ 0,11,L \\ 1 & 100 \\ -1 & 11,L \\ 1 & 11,L \\ 1 & 102 \\ -3 & 1325 \\ -5 & 705 \end{array}$	1 1043 -2 2011 -2 2011 -3 10436 -2 2011 -3 10456 -3 10456 -3 10456 -3 10456 -3 10456 -3 10456 -4 10456 -4 10456 -5 10572 -5 10572 -5 10572 -5 10572 -5 10572 -7 9 5342 -7 9 1-2 -3 587 -7 9 1-2 -3 587 -8 -8 -5 -8 -8 -5 -8 -8 -5 -8 -8 -7 -9 -8 -8 -8 -7 -8 -8 -8 -8 -7 -8 -8 -8 -8 -7 -8 -8 -8 -8 -7 -8 -8 -8 -8 -7 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8
735 5%2 1068 1068 1068 800 800 800 800 845 1255 1069 167% 757 1370 803	1079 1149 2020 1053 2020 1053 2020 1053 1055
2,11,L 1 1172 -1 2088 -2 603 -3 951 3,11,L 1 811 -1 811 -3 1690 -5 1846 -5 1846 -5 1359 -1 655 -3 626 -5 1359 -7 1210 5,11,L 1 100 ⁴ -1 1538	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1051 1960 499 889 681 688 1062 1689 1303 1224 572 683 1229 1182 1051 1504	-595 816 673 673 673 673 673 673 673 67
-3 814 6,11,4 -1 905 3 979 -3 1628 -5 907 7,11,4 -7 1010 8,11,4 -7 1020 0,12,4 0,12,4 0,16	$\begin{array}{c} 0.022\\ 0.733\\ -5\\ 1231\\ -5\\ 1231\\ -7\\ 1003\\ -5\\ 1231\\ -7\\ 1003\\ -5\\ 1231\\ -7\\ 1003\\ -5\\ 1003\\ -5\\ 1003\\ 2\\ 1005\\ -5\\ 7\\ 0\\ 1003\\ 2\\ 1005\\ -5\\ 7\\ 0\\ 1005\\ -5\\ 7\\ 0\\ 1005\\ -5\\ 7\\ 0\\ 1005\\ -5\\ 7\\ 0\\ 1005\\ -5\\ 7\\ 0\\ 1005\\ -5\\ 7\\ 0\\ 1005\\ -5\\ 7\\ 0\\ 1005\\ -5\\ 7\\ 0\\ 1005\\ -5\\ 7\\ 0\\ 1005\\ -5\\ 7\\ 0\\ 1005\\ -5\\ 7\\ 0\\ 1005\\ -5\\ 7\\ 0\\ 1005\\ -5\\ 0\\ 1005\\ -5\\ 0\\ 0\\ 1005\\ -5\\ 0\\ 0\\ 1005\\ -5\\ 0\\ 0\\ 1005\\ -5\\ 0\\ 0\\ 1005\\ -5\\ 0\\ 0\\ 1005\\ -5\\ 0\\ 0\\ 0\\ 1005\\ -5\\ 0\\ 0\\ 1005\\ -5\\ 0\\ 0\\ 1005\\ -5\\ 0\\ 0\\ 1005\\ -5\\ 0\\ 0\\ 1005\\ -5\\ 0\\ 0\\ 0\\ 1005\\ -5\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$
771 84 67 157 86 122 103 108 85 186 105 70	6 31 113 50001 0000 877 665 527 655 527 525 525

44

The density was measured by the flotation method in a mixture of sym-tetrabromethane and sym-dichloroethane.

Intensity data. A regular prismatic b crystal about 0.05 mm. in diameter was selected for the X-ray work. Intensities were recorded for the layer k=0 to 11 using the multi-film and equi-inclination Weissenberg technique with nickel-filtered copper radiation ($\lambda =$ 1.5418 Å). The hk0 and 0kl reflections were collected by the precession method. The intensities of the recorded 921 reflections were measured with a Joyce-Loebl Flying Spot microdensitometer. The intensities of the several layers were reduced to a common scale by comparison with common hk0 and 0kl (Precession) after applying the Lorentz and polarization factors. No correction was made for absorption ($\mu R =$ 0.46) or extinction. The absolute scale and the approximate isotropic temperature factor were determined by a Wilson plot from the three-dimensional data and were edjusted when the structure became known.

Considering that two Determination of structure. molecules are to be placed in the unit cell, the two

uranium atoms must lie on inversion centers and the 2a equipoint was chosen. The coordinates of the arsenic atom were readily obtained from P(uv) and P(uw). The three-dimensional electron density maps computed with the contributions of the heavy atoms yielded the positions of the remaining atoms.

The set of structure factors evaluated using the positional parameters of the trial structure and an overall temperature factor B of 2 Å² gave an R_{hkl} index of 16%.

The Fourier coordinates were initially Refinement. refined on an Olivetti Elea 6001 s by block-diagonal least-squares¹⁰ with isotropic temperature factors using the Cruickshank weighting scheme. Atomic form factors for U, As, O, N, C, were taken from the International Tables for X-ray Crystallography (1962). The resulting R was 11.5%. The refinement was then continued on an IBM 7040-7094 system with the X-ray 63 program¹¹ using full-matrix least-squares¹² with isotropic temperature factors. The final refinement was made with two cycles, using anisotropic temperature factors for all atoms except N and those of the phenyl

Coordinates ($\times 10^4$) and their e s d 's (in parentheses) Tahia II

	x/a	y/b	z/c		x/a	y/b	z/c
	0 (0)	0 (0)	0 (0)	C(6)	4917 (63)	1075 (36)	4483 (66)
As	3132 (4)	1385 (3)	1221 (5)	C(7)	4055 (44)	1185 (26)	316 (48)
O(5)	1017 (33)	-685 (20)	60 (34)	C(8)	5664 (60)	983 (31)	1371 (65)
O (4)	1422 (52)	-548 (27)	4477 (48)	C(9)	6300 (44)	706 (27)	682 (48)
ō (ji)		-676 (22)	2019 (35)	C(10)	5549 (46)	710 (28)	-923 (49)
O(2)	1732 (42)	81 (27)	2983 (39)	C(11)	4068 (59)	887 (32)	-1883 (62)
ŌÛ	2181 (35)	723 (19)	1202 (37)	C(12)	3241 (51)	1334 (28)	-1253 (55)
N	1040 (39)	-400 (28)	3250 (56)	C(13)	1966 (47)	2209 (29)	282 (50)
C(1)	4656 (43)	1562 (26)	3365 (46)	C(14)	783 (38)	2350 (24)	330 (42)
$\tilde{C}(2)$	5630 (63)	2159 (36)	3822 (65)	C(15)	-100(52)	3000 (25)	-200 (52)
$\tilde{C}(3)$	6764 (62)	2317 (36)	5451 (67)	C(16)	233 (90)	3550 (50)	-776 (94)
$\tilde{C}(4)$	6876 (75)	1886 (42)	6410 (80)	C(17)	1334 (79)	3383 (41)	-950 (79)
Č(5)	6023 (66)	1316 (38)	6062 (69)	C(18)	2200 (48)	2792 (48)	-383 (86)

Table III. Thermal parameters $(\times 10^2)$ and their e.s.d.'s (in parentheses)

(a) Anisotrop	pic thermal factors (e)	$xp[-1/4\sum_{i=1}^{3}\sum_{j=1}^{3}B_{ij}h_{i}]$	hjai*aj*])			
	B 11	B ₂₂	B ₃₃	B ₁₂	B ₁₃	B ₂₃
U As O(1) O(2) O(3) O(4) O(5)	200 (6) 182 (14) 307 (138) 682 (193) 398 (151) 954 (291) 286 (130)	164 (13) 312 (36) 357 (293) 654 (345) 758 (327) 1175 (370) 431 (287)	287 (8) 211 (20) 331 (148) 486 (180) 295 (162) 269 (189) 301 (148)	47 (14) 13 (21) 108 (151) 87 (250) 208 (180) 141 (262) 221 (154)	164 (6) 122 (16) 206 (126) 459 (165) 233 (140) 397 (203) 193 (122)	$\begin{array}{r} - 13 (15) \\ 20 (23) \\ - 66 (151) \\ - 94 (243) \\ 211 (183) \\ 158 (213) \\ - 145 (151) \end{array}$
(b) Isotropic	thermal factors					
	B (Ų)		В	(Ų)		B (Å ²)
N C(1) C(2) C(3) C(4) C(5) C(6)	380 (80) 199 (84) 454 (132) 434 (134) 493 (158) 437 (137) 503 (145)		C(7) 204 C(8) 412 C(9) 240 C(10) 231 C(11) 453 C(12) 283	4 (87) 2 (124) 0 (92) 1 (89) 3 (128) 3 (109)	C(13) C(14) C(15) C(16) C(17) C(18)	128 (95) 94 (70) 200 (78) 900 (212) 684 (172) 800 (192)

(10) G. Panattoni, G. Grubissich, and E. Frasson, Ric. Sci., 11-A, 35, 995 (1965). (11) Stewart, Technical Report TR6Y-6, Univ. of Maryland, College

Park, Maryland (1964). (12) W. R. Busing, K. O. Martin, and H. A. Levy, ORHL-TM-305, Tennessy (1962).

Panattoni, Graziani, Croatto, Zarli, Bombieri | Molecular Structure of UO1(NO3)2.2Pb3AsO

groups. Various weighting functions were employed, at the different stages of the refinement. During the final cycles the weights w were set equal to 1 for

 $F_{\rm o}\!<\!100$ and equal to $\frac{10^4}{{F_{\rm o}}^2}$ for $F_{\rm o}\!\geq\!100$ following

a Hughes's modified scheme. The final R index was 8.6%. For the final cycle, the average ratio of the change in a parameter to its estimated standard deviation was 0.5 and the maximum ratio was 0.8. Observed and calculated structure factors are listed in Table I.

A final F_o-F_c synthesis showed some ridges of electron density near the uranium atom extending in the *b* direction, along which the layers were recorded, but no appreciable residues were found over the rest of the unit cell.

Accordingly no allowance was made for the hydrogen atoms. The positional and thermal parameters with their estimated standard deviations are shown in Tables II and III.

Discussion

The isolated compounds (I) and (II) have the general formula $UO_2(NO_3)_2 \cdot 2L$ (L=(C₆H₅)PO, (C₆H₅)₃AsO).

The structure of (I) is the same as that of (II). This is shown by the similarity in composition, by the infrared spectra and by X-ray single crystal diffraction.¹³

The uranium atom is 8-coordinated. The uranyl group is surrounded equatorially by an irregular hexagon of six oxygen atoms with a configuration similar to that commonly observed in other uranyl complexes.¹⁵ Figure 1 shows a perspective view of the molecule. Figure 2 shows the crystal packing in the cell. In Table IV are listed the intermolecular contacts less than 3.6 Å.

Figure 1. A perspective view of the molecule.

(13) R. Graziani, B. Zarli and G. Bandoli, *Ric. Sci.*, 37, 984 (1967).
(14) D. T. Cromer and P. E. Harper, *Acta Cryst.*, 8, 847 (1955).
(15) (a) D. Hall, A. D. Rae, and T. N. Waters, *Acta Cryst.*, 19, 369 (1965); (b) J. C. Taylor and M. H. Mueller, *Acta Cryst.*, 19, 536 (1965).

Figure 2. Molecular packing in the unit cell.

Table IV. Intermolecular contacts.

Atom 1	Atom 2	sym.	Dist.	Symmetry operation used in generating Atom 2
O(2) C(5) C(5) C(5) C(5) C(4) C(5) C(10) C(10) C(10) C(10) C(10) C(10) C(10) C(11) C(12)	C(17) O(2) O(4) O(5) N N O(5) O(5) O(5) O(4) O(4) C(8) C(8) C(8) C(9) C(9)	1 2 2 2 2 2 2 3 3 4 4 3 3 3 3 3 3 3 3 3	3.31 Å 3.37 3.55 3.59 3.55 3.36 3.53 3.31 3.47 3.40 3.45 3.56 3.52 3.56 3.52 3.46	$1 = x, \frac{1}{2} - y, \frac{1}{2} + z$ $2 = 1 - x, \overline{y}, 1 - z$ $3 = 1 - x, \overline{y}, \overline{z}$ $4 = \overline{x}, \frac{1}{2} + y, \frac{1}{2} - z$
C(11) C(12)	C(9) C(9)	3	3.46 3.58	

Although the deviations of the oxygens from the L.S. equatorial mean plane are of the same order as the e.s.d.'s, their regularly alternating disposition suggests a slightly puckered structure.

The two nitrate ions, which are crystallographically equivalent, are coordinated as bidentate groups and are tilted with respect to the equatorial plane

Bond lengths and angles are reported in Tables V and VI.

The orientation of the phenyl rings in the triphenylarsine oxide moiety is described in Table VII.

The U–O bond length of the uranyl group, which is symmetrical and linear, is 1.71 Å, somewhat shorter than has been generally found in uranyl complexes but comparable with the reported distance 1.67 Å in uranyl carbonate.¹⁴ The two U–O_(nitrate) distances, 2.56 and 2.60 Å, are slightly longer than in uranyl nitrate hexahydrate¹⁵ probably because of the different ligands.

The U–O_(ligand) bond is 2.36 Å. This value is comparable with 2.39 and 2.38 Å for the U–O_(water) distance in uranyl nitrate hexahydrate¹⁵ and with a mean value of 2.36 Å of five U–O bonds in μ -transdiacetato-bis (dioxo-triphenylphosphineoxide-acetato)diuranium(VI), (UO₂(OAc)₂. Ph₃PO)₂². This seems to

Table V. Intramolecular bond angles (°) and their e.s.d.'s $(\times 10)$

O(1)-U-O(2) O(2)-U-O(3) O(1)-U-O(5) O(2)-U-O(5) O(3)-U-O(5)	63.4 (16) 49.5 (17) 90.5 (15) 92.1 (16) 86.9 (15)	$\begin{array}{c} U-O(2)-N\\ U-O(3)-N\\ O(2)-N-O(3)\\ O(2)-N-O(4)\\ O(3)-N-O(4)\\ U-O(1)-As \end{array}$	98.7 (23) 99.3 (26) 112.6 (29) 124.5 (31) 122.8 (30) 153.0 (15)	O(1)-AsC(1) O(1)-AsC(7) O(1)-AsC(13) C(1)-AsC(7) C(1)-AsC(13) C(7)-AsC(13)	103.5 (20) 113.1 (22) 115.0 (23) 109.2 (23) 107.8 (23) 107.7 (23)
$\begin{array}{c} \text{As-C(1)-C(2)} \\ \text{C(1)-C(2)-C(3)} \\ \text{C(2)-C(3)-C(4)} \\ \text{C(3)-C(4)-C(5)} \\ \text{C(4)-C(5)-C(6)} \\ \text{C(5)-C(6)-C(1)} \\ \text{C(6)-C(1)-C(2)} \end{array}$	118.7 (38) 119.6 (50) 116.0 (63) 123.0 (70) 122.0 (65) 113.6 (51) 120.9 (52)	As-C(7)-C(8) C(7)-C(8)-C(9) C(8)-C(9)-C(10) C(9)-C(10)-C(11) C(10)-C(11)-C(12) C(11)-C(12)-C(7) C(12)-C(7)-C(8)	116.6 (36) 117.0 (45) 123.6 (48) 118.3 (47) 121.0 (48) 118.2 (46) 120.8 (59)	As-C(13)-C(14) C(13)-C(14)-C(15) C(14)-C(15)-C(16) C(15)-C(16)-C(17) C(16)-C(17)-C(18) C(17)-C(18)-C(13) C(18)-C(13)-C(14)	119.6 (32) 125.0 (44) 121.8 (58) 113.7 (66) 124.4 (78) 125.5 (66) 112.0 (52)

Table	VI.	Intramolecular	bond	lengths	(Å)	and	their	e.s.d.'s	in	parentheses	(X	10 ²)
					· · · · /						• • •		

UO(1) UO(2) UO(3) UO(5)	2.36 (3) 2.56 (4) 2.60 (4) 1.71 (3)	AsO(1) AsC(1) AsC(7) AsC(13)	1.65 (4) 1.88 (5) 1.85 (5) 1.89 (5)	NO(2) NO(3) NO(4)	1.34 (7) 1.25 (7) 1.16 (7)
I Pheny	l ring	11 Phenyl	ring	III Pher	ıyl ring
C(1)-C(2) C(2)-C(3) C(3)-C(4) C(4)-C(5) C(5)-C(6) C(6)-C(1)	1.44 (8) 1.43 (10) 1.28 (10) 1.34 (11) 1.43 (10) 1.41 (9)	C(7)-C(8) C(8)-C(9) C(9)-C(10) C(10)-C(11) C(11)-C(12) C(12)-C(7)	1.45 (8) 1.41 (8) 1.39 (7) 1.34 (8) 1.50 (9) 1.35 (7)	C(13)C(14) C(14)C(15) C(15)C(16) C(16)C(17) C(17)C(18) C(18)C(13)	1.37 (7) 1.47 (7) 1.39 (11) 1.38 (13) 1.37 (12) 1.44 (10)

Mean value in the 18 C–C bonds = 1.40.

Table VII. Least-squares Planes

69

78

74

O'(1)

O'(2)

O'(3)

		(a) Coeff referre	icients in A	X + BY + C2 /stallograph	Z = D ic axes	(b) Ang	les between the	planes (°)
		Α	B	C	D		α γ	ε
Coordination p	shane (α)		14.381	4.1539	0.000	β	4	
Nitrate group	(β)	, _0.7837	13.55 9	4.0828	0.0298	δ	79.3	65.8
O(2), O(3), O(3) I Phenyl ring ((Y)	9.4664	10.041	5.6684	0.9787	ε	84.9	
II Phenyl ring $C(7)$ $C(12)$	(δ)	3.9335	18.026	-2.3785	3.6441			
$\begin{array}{l} C(1) - C(12) \\ \text{III Phenyl ring } (\epsilon) \\ C(13) - C(18) \end{array}$		1.3888	7.5342	6.9587	2.1220			
(c) Deviations of	f the atoms from the	planes (Å×10 ⁵	')					
	z	β		γ		δ		ε
*As 1 O(1)	88 69		*As C(1)	- 96 - 47	*As C(7)	205 - 12	*As C(13)	
O(2) -	78 O(2) 74 O(3)	0	C(2)	16 7	C(8)	29 54	C(14) C(15)	13 14

C(5)

C(6)

2

33

55

* The arsenic atom is not included in the least-squares calculations.

0

O(4)

indicate that the normal covalent U–O bond lies between 2.35 and 2.40 Å. Therefore within the limits of the e.s.d'.s in the bonds and angles the chromophore UO_8 has D_{2h} symmetry.

The N–O bonds of the nitrate groups are not equivalent; those involving coordinated oxygen atoms are slightly longer (1.34, 1.25 Å) than the others (1.16 Å). In addition the angle O(2)–N–O(3) (111°) is consider-

ably smaller than 120°. Therefore, the symmetry of the nitrate groups is lower than D_{3h} . The distorsion occurs with a decrease in the angle O(2)-N-O(3) and a lengthening of the bonds N-O(2), N-O(3) and U-O(2), U-O(3). Distorsion in the nitrate groups was also reported on the basis of the infrared spectra in the uranyl nitrate complexes⁶ and was subsequentely confirmed by X-ray and neutron diffraction studies.¹⁵ It

38 2 27 C(16)

C(17)

C(18)

48

- 20

C(10)

C(11)

C(12)

is interesting to note that the mean value the of U-O-N angles is 99° which is very close to that observed in most oxygen compounds, such as water (104°). This suggests that the hybridization state of the oxygen atom is the same in these compounds. The previously noted distorsions could arise from the tendency of the oxygen to retain a bond angle close to 100°. In fact, assuming the D_{3h} symmetry for the nitrate group and the covalent value for the U-O bond length, the angle U-O-N would be ~90°, and there would not be any participation of the 2sA.O.'s of the oxygen.

A discussion of the hybridization state of the uranium on the basis of the bond angles cannot be carried out unequivocally owing to the many A.O.'s (5f, 6d, etc.) with almost equal energies.

However, because of the hexacoordination in a nearly equatorial plane commonly observed in the actinide coordination compounds, an important role may be played by the two A.O.'s $5f_{x(x^2-3y^2)}$ (=1/2 $(f_{+3}+f_{-3})$ and $5f_{y(3x^2-y^2)}$ $(=-i/2(f_{+3}-f_{-3}))$ having exactly six lobes in the plane. Moreover because of the nature of the ligands there is some distorsion from D_{6h} symmetry which to a first approximation (neglecting the AsPh₃ groups) is reduced to D_{2h}. The $5f_{x(x^2-3y^2)}A.O.$ combines with $\sigma_2-\sigma_3$ of each nitrate group (where σ denotes the oxygen hybrid orbitals pointed towards uranium) and the $5f_{y(3x^2-y^2)}$ combines with $\sigma_2 + \sigma_3$ (for the axis orientation and the nomenclature see Figure 3).

The overlap for the $5f_{x(x^2-3y^2)}A.O.$ is at a maximum for a chelate angle of 60°. The overlap for the $5f_{y(3x^2-y^2)}$

Figure 3. The equatorial plane.

is largest for a chelate angle of 0°. One would therefore expect the experimental value to be between these limits. In fact this value was 50°.

The As-O lenght, 1.65 Å, is similar to the distance 1 69 Å found in HgCl₂. $2Ph_3AsO^{16}$ and to 1.66 Å in the dimer of the same compound.¹⁷ A value of 1.70 Å also was found in Co(Ph₂CH₃AsO)₄(ClO₄)₂.¹⁸ This very short As–O distance can be ascribed to the strong π character of this bond. Similar bond shortening has been found in some P-O distances.¹⁹

(16) C. I. Bränden, Acta Chem. Scand., 17, 136 (1963).
(17) C. I. Bränden, Archiv. Chemj, 22, 485 (1964).
(18) B. Pauling, G. B. Robertson, and G. A. Rodley, Nature, 207, 73 (1965). (19) F. A. Cotton, R. D. Barnes, and E. Bannister, J. Chem. Soc., 2199

(1960).