Structural Aspects and Magnetic Behaviour of NbS₂ and TaS₂ Containing Extra Metal Atoms of the First Transition Series

J. M. van den Berg and P. Cossee

Received February 25, 1968

A systematic investigation of the systems M-Nb-S and M-Ta-S (M=Mn, Fe, Co, Ni) revealed the presence of the compounds MNb₃S₆ and MTa₃S₆. Their structures were determined from powder diagrams. They proved to have a superstructure, derived from the 2s-NbS₂ type and resulting from an ordered distribution of the metal atoms M over the octahedral holes between the prismatic NbS₂ layers. The magnetic susceptibilities were measured; all the compounds showed a temperature-dependent paramagnetism with a spontaneous localized moment.

Introduction

An investigation of ternary transition-metal sulfides Cu_xNbS_2 and Cu_xTaS_2 (x ~ 0.4-0.67) showed that the additional copper atoms are statistically distributed over the tetrahedral holes between the prismatic sulfur layers, which are characteristic of NbS₂ and TaS₂.^{1,2,3} This finding prompted us to investigate the behaviour of the elements Mn, Fe, Co, and Ni in the layer structures NbS₂ and TaS₂; it appeared that well-defined compounds MNb₃S₆and MTa₃S₆ are formed, in which M is the first-row transition element. Their structural and magnetic properties were studied.

Experimental Section

Preparation. All the samples were prepared by heating weighed quantities of the elements in evacuated quartz tubes for one day; after crushing, the samples were reannealed at the same temperature for three days and cooled slowly.

Identification. From the change of cell dimensions of NbS₂ and TaS₂ observed on Guinier photographs it was concluded that the extra metal atoms M could be inserted in the empty octahedral interstices in the NbS2 and TaS₂ lattice to give new compositions M_xNbS₂ and M_x TaS₂, with x ranging from 0 to ~1/3. In the range x = 0.30-0.33 a single phase was detected with extra reflections pointing to a superstructure. The composition x = 1/3 was chosen for further detailed work, because at this degree of filling one of the three possible

F. Jellinek, Arkiv Kemi, 20, 447 (1963).
K. Koerts, Acta Cryst., 16, 432 (1963).
J. M. van den Berg, J. Less-Common Metals, 13, 363 (1967).

crystallographic positions available for the extra metal atoms can be fully occupied, thus giving well-defined compounds MNb₃S₆ and MTa₃S₆.

Crystal Data. The compounds MNb₃S₆ and MTa₃S₆ could be indexed on a hexagonal lattice. The unit cell proved to be a supercell of the 2s-NbS₂ modification with an axis $a\sqrt{3}$ and about the same c-axis as that of NbS₂ and TaS₂. The cell parameters were determined from Guinier photographs calibrated with KCl, using a least-squares calculation. They are listed in Table I. The unit cell contained the formula unit $M_2(Nb \text{ or } Ta)_6S_{12}$ and the space group was found to be $P 6_{3}22$ or $P 6_{3}/m$. As the rather strong additional reflections are caused by an ordering of the extra metal atoms and the space group P 6322 showed a better possibility for an ordering of these atoms than P $6_3/m$, the former was chosen.

Solution and Refinement. The intensities were measured from powder diffractograms. To obtain random orientation the substance was mixed with dry Canada balsam. Only the observed peaks which could be indexed unambiguously were used in the refinement. From the crystal data and the positions in 2s-NbS₂ the following initial positions were assumed:

12 S	in x, y, z (12 i) with $x=1/3$, $y=0$, $z=3/8$
4 Nb ₁ (Ta ₁)	in 1/3, 2/3, z (4 f) with $z=0$
2 Nb ₁₁ (Ta ₁₁)	in 0, 0, 0, (2a)
2 M	in 1/3, 2/3, 1/4 (2c) or 2/3, 1/3, 1/4 (2d) or 0, 0, 1/4 (2b)

Considering that the extra reflections point to a superstructure, there are three possibilities for the position of the atoms M: 2c (= 2d) or 2b, or a statistical distribution over 2c and 2b. Calculation of the structure factors for the different possibilities showed that the best fit to experimental data could be obtained for 2 M in (2c), and this one was used in the least-squares refinement. The results are listed in Table II.

The shifts of the x- and y-parameters were not significant. The R factor was calculated for all the structure factors observed. Experimental and calculated structure factors are listed in Table VII.

In order to justify a unique conclusion that only (2c) is occupied, we tried the following procedure.* By

(*) The statistical analysis was kindly performed for us by J. Meisner.

van den Berg, Cossee | Structures and Magnetism of NbS₂ and TaS₂ with extra metal atoms

Table I. Cell dimensions with standard deviations

	a	c		a	c
MnNb ₃ S ₆	5.782 (0)	12.629 (0.001)	MnTa ₃ S ₆	5.757 (0)	12.697 (0.001)
FeNbS ₃ S ₆	5.766 (0)	12.212 (0.000)	FeTa ₃ S ₆	5.739(0)	12.289 (0.001)
҄СѻℕҌ₃Ѕℴ	5.768 (0)	11.886 (0.001)	CoTa ₃ S ₆	5.740 (0)	11.932 (0.000)
NiNb ₃ S ₆	5.758 (0)	11.897 (0.000)	NiTa ₃ S ₆	5.737 (0)	11.942 (0.001)
2s-NbS₂	$5.74 = a\sqrt{3}$	11.89	2s-TaS ₂	$5.74 = a\sqrt{3}$	12.10

Table II. Atomic parameters with standard deviations

	x(S)	y(S)	z(S)	z(Nb ₁)	В	R(%)
MnNb ₃ S ₆	0.333	0	0.375 (0.002)	-0.001 (0.001)	1.20 (0.19)	17.9
FeNb ₃ S ₆	0.333	Ó	0.375 (0.002)	-0.002 (0.001)	0.60 (0.34)	16.9
CnNb ₃ S ₆	0.333	0	0.370 (0.002)	-0.003 (0.001)	0.38 (0.14)	11.3
NiNb3S6	0.333	Ő	0.365 (0.001)	-0.001 (0.001)	0.11 (0.06)	5.0
MnTa ₃ S ₆	0.333	Õ	0.375 (0.004)	-0.000 (0.005)	0.76 (0.33)	6.7
FeTa ₃ S ₆	0.333	0	0.371 (0.002)	-0.003 (0.002)	0.65 (0.28)	3.7
CoTa ₃ S ₆	0.333	Õ	0.366 (0.003)	-0.002(0.002)	0.10 (0.38)	9.1
NiTa ₃ S ₆	0.333	Õ	0.369 (0.002)	-0.003 (0.001)	0.83 (0.22)	6.2

Table III. Occupation numbers with standard deviations

	x (2c)	x (2d)	x (2b)		
MnNb ₃ S ₆	0.272 (0.071)	0.008 (0.070)	0.050 (0.129)		
FeNb ₃ S ₆	0.190 (0.160)	$0.000(16.10^{-2})$	0.140 (0.310)		
NiNb,S.	0.212 (0.075)	0.046 (0.072)	0.072 (0.136)		
MnTa ₃ S ₆	0.250 (0.110)	0.050 (0.110)	0.030 (0.200)		
FeTa ₃ S ₆	0.172 (0.089)	$0.000(89.10^{-3})$	0.158 (0.153)		
CoTa ₃ S ₆	0.213 (0.080)	0.048 (0.078)	0.069 (0.144)		
NiTa ₃ S ₆	0.259 (0.085)	0.013 (0.84)	0.058 (0.154)		

introducing the occupation number x for the extra metal atoms M over the three positions (2c), (2d), and (2b) and subsequent least-squares refinement we followed the behaviour of x. This attempt failed because different minima could be calculated for x. The final R values were slightly larger (about 2-5%) than those in Table II for (2c) fully occupied, but no unique conclusion could be drawn. We therefore did a statistical calculation assuming that the sum of the occupation numbers is 1/3. The results in Table III show that our initial assumption of x (2c) = 1/3 is a reasonable one in most cases.* For some unknown reason the calculation was unsuccessful for CoNb₃S₆. Meanwhile we succeeded in isolating single crystals of some of the compounds. The preliminary results of analyses of these crystals completely support the ordering of M in (2c).**

Magnetic Measurements. The magnetic susceptibilities were measured on powder samples in a temperature range 100-1000 °K at different field strengths using the Faraday method. For compounds which showed a field dependence due to ferromagnetic impurities, the measured values were extrapolated to infinite field strength; otherwise the values were averaged.

(*) Neutron diffractions carried out by the University of Leyden and R. C. N. Petten also support this conclusion according to discussion remarks made by D. J. W. Ydo and B. van Laar at the Second Inter-national Conference on Solid Compounds of Transition Elements, Enschede, June 12-16, 1967. (**) Results will be published elsewhere.

Results and Discussion

Structures. When the disulfides in question are combined with extra metal atoms of the first-row transition elements these atoms are inserted into the octahedral holes between the layers of the 2s-NbS₂ type compounds (NbS₂ and TaS₂. The compounds MNb₃S₆ and MTa₃S₆ have one third of the available octahedra occupied. In the discussion we assume that position (2c) is fully occupied. The ordering of the metal atoms in the (001) planes is drawn in Figure 1. In Figure 2 we see that linear Nb_IMNb_I and Ta_IMTa_I groups are formed along the c-axis. As expected, the Nb1 and Ta1 atoms are shifted slightly to the vacant octahedra.

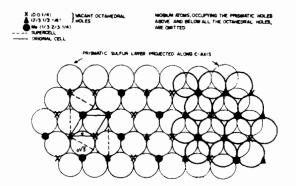
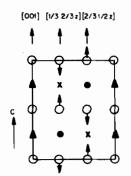



Figure 1. Ordering of the metal atoms.

The distances indicated in Figure 3 are listed in Table IV. From Tables I and III we see that the cell axis a is determined by the sulfur contacts (3) and the niobium and tantalum distances in the prismatic slabs. The c-axis is determined by the intermetallic M-Nb or M-Ta distance and the M-S distance; Mn and Fe expand the lattice, while Co and Ni have little influence on the NbS₂ lattice and even contract that of TaS₂. This influence on the lattice is mainly reflected in the S-S distances (5) between the prismatic layers. The M-S distances decrease in the order Mn, Fe, Co, Ni.

Figur 2. Diagonal section (110) of $MNb_3(Ta_3)S_6$ (arrows indicate deviations from the ideal positions).

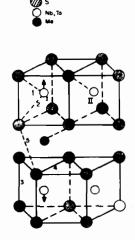


Figure 3. Interatomic distances calculated.

Table IV.	Interatomic	distances
-----------	-------------	-----------

	2s-NbS₂	MnNb ₃ S ₆	FeNb ₃ S ₆	CoNb ₃ S ₆	NiNb ₃ S ₆
M-S	(2.42)	2.491	2.454	2.394	2.357
M-Nb	(2.97)	3.170	3.077	3.008	2.984
Nb ₁₁ -S	2.47	2.491	2.454	2.467	2.502
$Nb_1 - S(1)$	2.47	2.483	2.493	2.445	2.494
$Nb_n - S(2)$	2.47	2,499	2.470	2.489	2.510
Nb ₁ -Nb ₁₁	3.31	3.338	3.329	3.330	3.324
S-S(3)	3.14	3.157	3.053	3.091	3.210
SS(4)	3.31	3.338	3.329	3.330	3.324
S-S(5)	3.40	3.699	3.607	3.441	3.341
	2s-TaS₂	MnTa₃S₀	FeTa ₃ S ₆	CoTa ₃ S ₆	NiTa ₃ S
M-S	(2.44)	2.488	2.423	2.361	2.380
M-Ta	(3.03)	3.171	3.108	3.007	3.019
Ta ₁₁ -S	2.44	2.488	2.484	2.493	2.468
$Ta_1 - S(1)$	2.44	2.488	2.461	2.478	2.446
$Ta_1 - S(2)$	2.44	2.488	2.508	2.509	2.491
$Ta_1 - Ta_1$	3.32	3.322	3.314	3.314	3.310
S-S(3)	3.03	3.171	3.170	3.198	3.126
S-S(4)	3.32	3.322	3.314	3.314	3.310
S-S(5)	3.58	3,706	3.535	3.365	3.422

Figure 4 shows that the occupied octahedral holes share faces with the occupied prismatic holes, resulting

in short intermetallic distances. This points to intermetallic bonding between the two different metal atoms, which apparently plays an important role in the stability of this type of compound. We may compare them with the structure of Cu2/3NbS₂ and Cu2/3TaS₂, which have one third of the tetrahedra occupied in a statistical distribution (Figure 4). The preference of Cu for tetrahedral co-ordination and of Mn, Fe, Co, and Ni for octahedral co-ordination together with their tendency to intermetallic bonding with Nb or Ta may explain why copper compounds of NbS₂ and TaS₂ change into the 2s-MoS₂ type, while the other compounds preserve the 2s-NbS₂ type; in 2s-MoS₂ it is the tetrahedra and in 2s-NbS₂ the octahedra which are just above the occupied prismatic holes.

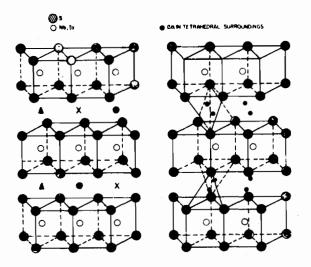


Figure 4. (a) Diagonal section (110) of $MNb_3(Ta_3)S_6$ with sulfur surroundings. (b) Diagonal section of Cu_3NbS_2 (\equiv (1 10) section of 2s-MoS₂).

Magnetism. Plotting the experimental susceptibilities χ_{Mol} against the reciprocal temperature T^{-1} , we found that the χ values showed a linear dependence at temperatures above ~ 350 °K (Figure 5). This points to a normal Curie-Weiss behaviour with rather low values of θ , which causes a deviation from the linear curve at lower temperatures.

From an observation of the resulting curves it is immediately clear that in many instances a positive temperature-independent component will remain at infinite temperature, which in some cases even adopts an unusually high value we take into account that diamagnetic corrections have not yet been introduced in the curves shown.

An obvious method to analyse magnetic data such as the ones obtained here is to try whether the susceptibility can be described by a formula

$$\chi_{Mo1} = A_M + \frac{C_M}{T - \theta}$$

Such an analysis gives inherently large uncertainties in A_M and θ , but a reasonable first approximation can be obtained for C_M .

146

The values of C_M , θ and A_M in Table V have been obtained by using a least-squares anlysis of the susceptibilities at 273°K and higher temperatures. It appeared that in a number of instances the values of χ at lower temperatures, especially liquid-nitrogen temperatures, were not easily incorporated in the series of measurements at higher temperatures. Therefore these points have been omitted systematically, which seems justified in view of the fact that magnetic interactions and the influence of impurities are becoming more important at lower temperatures. Considering the values of θ , all compounds are antiferromagnetic except those with manganese. reasonably approximated.

It is interesting to compare these compounds with the disulfides; NbS₂ shows a weakly temperaturedependent paramagnetism of the order of 0.1×10^{-3} , pointing to Pauli paramagnetism.⁴ Evidently the interaction of the new metal atoms with a pair of niobium (or tantalum) atoms in adjacent layers causes the formation of a centre {NbMNb} or {TaMTa} where localized electrons can be stored, accompanied by a rearrangement of the electrons in niobium (and tantalum) layers.

We arrive at the following assignment for the valencies and configuration of the inserted transition

Table V. Magnetic parameters for $x=1/3$ with standard	ard deviations
---	----------------

	A_{M} (10 ⁻³ c.g.s.)	См	θ (°K)	$\mu = \sqrt{8C_{M}}$
MnNb ₃ S ₆	0.48 (0.07)	2.88 (0.03)	68 (3)	4.80
FeNb ₃ S ₆	0.33 (0.03)	2.39 (0.02)	- 67 (6)	4.36
CoNb ₃ S ₆	0.82 (0.01)	0.55 (0.01)	-72(4)	2.09
NiNb ₃ S ₆	0.21 (0.02)	0.44 (0.01)	-21(9)	1.87
MnTa₃S₀	0.29 (0.20)	2.91 (0.06)	112 (4)	4.82
FeTa ₃ S ₆	0.30 (0.05)	2.65 (0.02)	-11(3)	4.60
CoTa ₃ S ₆	-0.32 (0.02)	1.72 (0.02)	-136 (5)	3.71
NiTa ₃ S ₆	-0.59 (0.03)	1.11 (0.01)	-190 (10)	2.98

Table VI. Magnetic parameters of M_{0.2}NbS₂

	A_{M} (10 ⁻³ c.g.s.)	См	θ	$\mu = \sqrt{8C_{M}}$
MnNb₅S₁₀	0.05 (0.02)	3.22 (0.04)	126 (3)	5.08
FeNb₅S₁₀	0.13 (0.13)	2.67 (0.07)	50 (8)	4.62
CoNb₅S₁₀	0.83 (0.01)	0.69 (0.01)	- 95 (4)	2.35
NiNb₅S₁₀	0.11 (0.02)	0.48 (0.01)	- 44 (10)	1.95

We realize that this is a rather rough approximation (for example, by doing so we neglect the possibility of a temperature-dependent magnetic moment) and Table V certainly does not pretend to cover the only solution. If impurities are present which mainly influence the low-temperature measurements, and consequently the curvature in that region, the extrapolation on the other side of the curve where A_M is important becomes very uncertain.

That we are indeed also concerned with this kind of effect in the present case is demonstrated by the influence of small variations in the preparative procedures, which cause changes in θ and rather drastic ones in A_M. For further confirmation we carried out a series of measurements on the systems M_xNbS₂ with x=0.2, which could be obtained more easily. Long reaction times were needed for the compounds with x=1/3 to pass into the ordered modification. Comparing the results listed in Table VI with those of Table V, we found that A_M approximated the diamagnetic correction ($\sim 0.5 \times 10^{-3}$) more closely in a number of cases, where the temperature and reaction time during preparation were lower. Only in the system CoxNbS2 did the excessively large AM value persist. This suggests that reaction of the samples with the silica tubes is responsible for impurities, which is reflected most clearly in A_M. Of course, this is also reflected in C_M , but its value is less sensitive to the uncertainties mentioned and can in most cases be elements:

Judging from this evidence, only Mn can attain the trivalent state in both NbS₂ and TaS₂ compounds, whereas the other elements are incorporated as M^{2+} . If Mn becames trivalent the centres can be described as Nb^{3+} M^{3+} Nb^{3+} (or Ta^{3+} M^{3+} Ta^{3+}) with Nb^{3+} and Ta³⁺ in the diamagnetic state as observed in the isoelectronic MoS_2 . With M^{2+} the same centres are found. However, the third Nb (or Ta) which is not coupled to inserted metal atoms remains in this way formally quadrivalent. The fact that only Mn is trivalent in both NbS₂ and TaS₂ compounds may be seen in the light of its lower ionization potential for d-electrons. The only exception seems to be Ni which in the NbS₂ compound is incorporated as Ni³⁺. In this connection it is of interest to note another difference: Co and Ni are in a high-spin state in the TaS₂ compounds and in a low-spin state in the NbS₂ compounds. As matters

(4) C. F. van Bruggen and F. Kadijk, private communication.

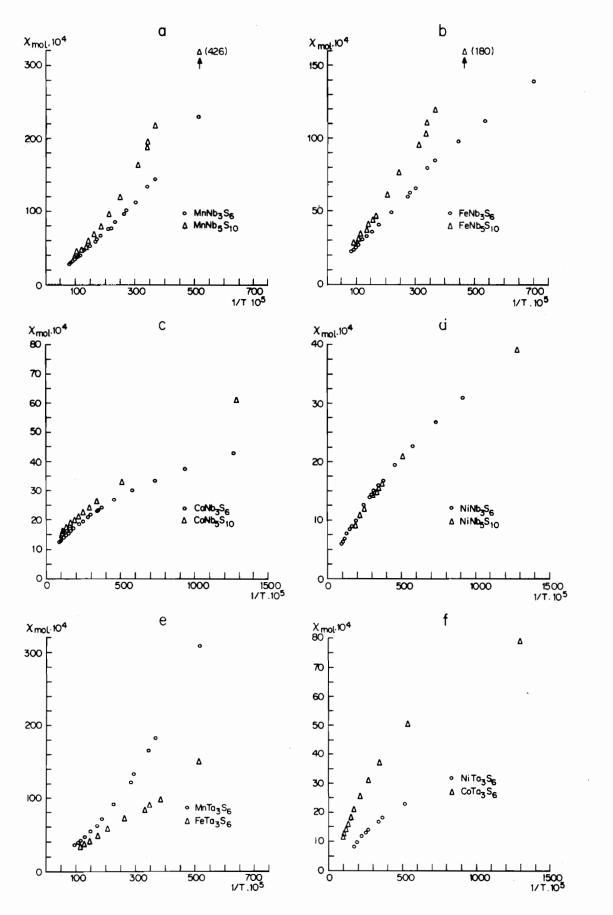


Figure 5. Magnetic susceptibilities vs. reciprocal temperature.

van den Berg, Cossee | Structures and Magnetism of NbS2 and TaS2 with extra metal atoms

Table VII.	Experimental	and	calculated	structure	factors
------------	--------------	-----	------------	-----------	---------

148

r	ныть, з	<i>k</i>		Peno_8			COND38	,		N1ND38	3.		toTa,S		Pata	8,	Cotte	8,	T	NiTa 3	
'hkl	P.	6 √p x P _c	h k l	P.0	6 √p x P _c	h k l	F.	6 √ p x P _c	h k 1	P.0	*6 √p x ₽ _c		P.	6 √p x ₽	hkl Po	~6 √p x ₽	hkl P ₀	3°6 √p x P _o	h kr 1		*6 √₽ x ₽
100	- ° 86	67	100	• 56	67	100	- o 50	47	100	°0 46	85		°0 126	174	100 47	59	1 0 0 51	51	100	۳ ₀ 57	84
101	138	158	101	117	155	101	113	105	101	166	200	102	96	96	101 118	128	1 0 1 100	114	101	157	182
102	73 180	89 155	102	78 163	90 164	102	80 134	63 123	102	69 196	113 193	103	139 469	157 431	102 101	80 171	102 64	68 135	102	91 215	112 235
110	442	482	110	401	482	110	336	369	110	626	594	110	868	968	0 0 4 357	350	0 0 4 343	309	004	494	447
111	343 119	373 78	111	301 6103	371	111	270	282	111	441	425		373	402 85	1 1 0 793	788	1 1 0 640	691	1 1 0	1012	1074
104	591	642	104	612 74	642 78	112	477 75	5 34 54	112	809 85	835 94	1 0 4	75 204	1315	1 1 1 301 1 0 4 7 65	319 68	1 1 1 252 1 1 27 858	270 964	1 1 2	392 1393	427 1473
201	128	127	201	112	126	201	107	85	201	156	156		131	140	1 1 2 104	108	104 53	59	104	86	90
202	312 91	334 73	113	324 89	338 74	113	271 93	2 89 52	113	469 121	486 90		320 126	368 132	201 188	103 320	201 140	93 303	200	110	64 137
105	166	111	105	133	98	105	118	55	105	145	133		740	1807	2 0 2 68	66	202 93	57	113	430	445
203	136	129	203	152	139	203	147	105	203	199	159		483	497	2 0 3 139	145	203 171	116	202	115	87
114	1186] 314]	1123 295	1 1 4	1145 73	1131 67	114	83) 119	875 105	114	1 384 168	1383 193		291 161	321 165	1 1 4 1425	1463 426	1 1 4 1164	1288 407	105	100 266	62 192
1 2 0	86	66	106	73	67	115	209	192	106	87	80	1 1 6 /1		1098	120 98	59	1 2 1 120	116	114	1887	:959
121	135 145	154 159	121	144 274	155 294	205	89 164	48 132	115	ز 257 174	234 118		114 208	116 1290	1 1 5 220	225 127	1 1 5 158 3 0 0 893	157 957	006 1217	653 150	587 165
115	626	523	123	159	174	300	662	679	123	191	200	-	042	1063	1 2 3 190	182	1 1 6 769	739	106	72	79
107	145	120	300	778	862	116	394	395	300	1078	1078		857	725	1 1 6 845	855	107 136	127	115	256	275
300	772 80)	854 82	116	476J 180	527 139	302	402 80	403 59	116 107	563 151}	565 148		244 760	279 805	3 0 0 7 1052	1055	302 744	752 66	122	98 202	106 238
302	497	504	302	ך 452	518	125	71	61	302	607	592	2075	99	104	124 76	74	0 0 8 602	511	300	1387	1416
206	57 J 314	58 243	124	74 J 150 J	85 109	117	265 249	242 233	124	107	103		656 219	714 2 66	302 877 008 565	849 579	125 98	66 267	116	261	1122 220
215	120	120	117	352	256	220	286	278	304	401	398	ړ 1 2 6	78	83	1 1 7 250	262	304 589	608	30 27	1114	1131
304	354	290	304	273	303	221	190	193	220	494	453	-	924	975 986	1 2 5 49	52	2 2 0 507	539 42	124	94	95
207	172 349	107 3 38	220	51 j 293	55 356	207	35J ר7וי	37 103	221	278 131 רו	298 135		974 144	140	304 718 220 595	659 586	2 2 1 259	190	008	777 368	752 365
221	257	237	221	203]	249	222	453	404	222	632	651		153	258	2 0 7 2 157	154	2 2 2 745	759	304	861	873
222	481 78	451 73	207	ز 105 418	126 477	223	183 479	212 372	223	341 638	364 636		129 304	135 1354	2 2 1 / 218	213 808	223 190 118 783	227 741	220	779 58	780 58
130	75	51	223	194	241	224	647	673	133	197	167	```	895	926	2 2 3 227	227	1 3 3 144	125	2 2 1	229	280
118	685 181	461	132	709	75 478	306	439 400	427	224	1085	1087 85		129	134 370	1 3 2 66	794 66	224 963	1027	207]	193	198
223	226	121 226	133	ע פטי, ר 212	143	209	120	1.7 45	208	75 55	62	1 3 4 }	430 88	75	132 66	151	208 37	19 39	2225	1075 254	1089 312
133	131)	127	109	78	53	226	300	321	306	682	769		286	246	208 42	42	306 751	808		1106	1039
306	829 (435	800 417	224	780 46	851 51	308	742 458)	736 375	225	179 [78]	191 79		184 837	244 861	2 2 4 1 1091 3 0 6 7 792	1108 803	127 144	154 55	133	190 1450	192 1460
217	142	136	306	538	448	233	118	95	128	82 >	82	1 1 10	895	844	1 2 7 198	200	0 010) 280	211	2087	53	.52
225	205 107)	216 45	127	164 242	164 227	227	2 52) 238	206 317	226	472)	472 1171	136	51 75	49 70	0 0 10 265 2 2 6 665	262 679	128 54	52 619	306	11 3 2 241	1096
1 0 10		45 45	226	455	419	141	266 J	235	233	140	145	30811		1406	2 3 1 86	86	1 0 10 40	40	127 00101	326	254 320
209	147	62	233	88)	64	129	19	21	1 1 10	647	675	230}	48	49	1 1 10 716	713	3 0 8 1057	1057	1 3 5	48	47
226	374 74)	392 43	308	1283 > 553 /	935 403	142	513 46	478 42	227	360) 533 }	375 527		119 755	119 801	3 0 8 (1139 2 3 2 55	1148 56	4 0 5 37	36 723	128	67 890	67 881
316	104	60	405	ر 72	60	143	249	259	141	376	370		294	312	140 634	664	2 2 7 248	233	1 0 10	58	57
2 3 0	647 55)	372 42	227	253 J	213	228	355 47	304 43	129	105 J 54 J	104 55	234	63 42	65 46	1 3 7 165	173 252	2 3 3 117	110 639		14 62 1018	1460 949
308		, 864	140	352 268)	399 295	144	744	800	137	154	155		060	1110	234) 54	52	1 2 9 3 19	21	405	32	29
231	129	100	137	129	141	1 1 11	1897	210	142	784	791		208	218	142 955	931	1 4 1 192	236	227	321	298
140	341 357	360 267	1 0 11	103 J 505 T	114 550	1 3 8	∫ 245 245 ح	39 218	234	76 J 467	76 455		769 318	784 246	406 / 42 143 - 256	39 271	2 3 4 42	923 49	233	174 884	161 865
234	53)	55	234	57	61	503	66)	59	228	580	531	144 1	472	1555	228 609	639	2 2 8 577	628	129	19	18
406	492 38	> 493 39	143	276	289 382	330	465 385	470 386	144	1290 66 1	1 321 72		819 230	737 207	1 2 10 57	219 57	1 4 4 1139	1253 239	1341)	334 189	326 216
1 1 11		178	235	439 1721	78	237	102	104	1 111	352	380	236)	66	60.	1 3 8 47	47	1 3 8 43	45	1427	1276	1236
228	472	349	1 1 11	أيبهه	202	332	306]	280	503	1107	91	145	234	291	0 0 12 > 198	198			234)	66	63
144	862	884	144	807	991	504	ر 26 ۱	26	3010	290 j	241	500)	33	30	1 4 4 1290	1286			143	270	365
1 012		> 3-6 74	1 3 8	47 47	57 60	1 2 11	166 632	124 512	330	818	788	501	81 176	72 1059	2 0 11 J 146 5 0 0 27	144			220	849 171	823 37
236			500	- >>)	28	2 2 10	393]	355				139)	113		1 4 5 207	209			1 4 47		1662
3 0 10		331	236	69	57	243	. 98	78				5°2).		70	501 60	53			1 1 11		300
229		178 248	1012	81	5 38 66	l'''	,,,,	257				237		999 99	2 2 9 1 38 3 0 10 568	128 526			1 3 8 0 0 12		56 255
502	79	35	145	336 J	276							330	810	837	502 147	34			2367	54	61
319	1334 151	> 591 67	2 2 9	234	194							2 2 10) 5 0 4 }	708	694 40	5 0 3) 62 4 0 8 > 33	80 31			145j 3010		249 636
2 0 12	42	33										3 3 2)		692	1 12 869	842			10.0	•11	~
	528														1 2 11 198	192					
	1167 447	96 500				1									1 4 6 822 3 3 0 721	796 697					
1		2													2 3 7 156	152					
															2 0 12 26 5 0 4 32	27 32					
															3 3 2 ∫ 585	564					
															2 2 10 606	595					1
						•															

Accolades: overlapping reflections.

stand, with the difficulties possibly related to impurities, we do not feel justified in attempting a more detailed description. We hope that measurements on single crystal samples will throw more light on this matter.

Acknowledgments. The authors with to thank Miss M. J. van Diepen for her assistance in carrying out the X-ray analyses, Misses M. Burink and Th. C. van Duykeren for measuring the magnetic susceptibilities and Mr. J. Gaaf for preparing the samples.