## On the Hydrolysis of Manganese(I1) in 1 M (Na<sub>2</sub>,Mn)SO<sub>4</sub> Ionic Medium at  $25^{\circ}C^*$

## **S. Fontana and F. Brito**

*Received March 5, 1968* 

The hydrolysis of manganese(II),

$$
q \operatorname{Mn}^{2+} + p \operatorname{H}_2O \rightleftharpoons \operatorname{Mn}_q(OH)_p^{2q-p} + p \operatorname{H}^+ \tag{1}
$$

in 1  $M$  (Na<sub>2</sub>Mn)SO<sub>4</sub> as self-ionic medium<sup>1</sup> and with the total manganese(I1) concentrations, B, 0.1, 0.25, 0.5, and 1.0 *M* at 25°C was studied. Previous works on the above equilibrium (1) report the formation of only  $MnOH<sup>+</sup>$  complex.<sup>2</sup>

The stability constants for the formation of the complexes  $Mn_q(OH)_p^{2p-q}$  (briefly designed as  $(p,q)$ ) are given by the expression

$$
\beta_{pq} = \Phi_B C_{pq} b^{-q} h^p \qquad (2)
$$

where  $\Phi_B$  represents the product of activity factors for each total concentration of manganese(II) and  $C_{pq}$ , *b*, and *h* respectively mean the equilibrium concentrations of the complexes  $(p,q)$ , of Mn<sup>2+</sup> and H<sup>+</sup>.

As usual in ionic medium work, a formula like  $MnOH<sup>+</sup>$  or  $Mn<sup>2+</sup>$  means the sum of all complexes containing, *i.e.*, MnOH<sup>+</sup> and various amounts of solvent species (H.O.  $N_0$  +  $S\Omega$ <sup>2</sup>-  $H\Omega$ .<sup>-</sup>).<sup>3</sup> From studies on the hydrolysis of  $U_2^{2+}$  in different ionic media, Sillan *et a1.4* found that although there may certainly be association of anions with both  $UO_2^{2^2}$  and  $UO_2$ -OH complexes, the majn species are the same for all the media used.

Because the activity factors in strongly concentrated ionic media can be assumed to be constant and equal to unity by choosing proper standard states,<sup>5</sup> and the manganese(I1) hydrolysis is very small, we can take  $\Phi_B = 1$  for each experiment of constant concentration B. The mass balance can then be given by the equations

$$
B = b + \sum \sum q \beta_{pq} b^q h^{-p} \qquad (3)
$$

$$
BZ = \sum_{\alpha} \sum_{\beta} p \beta_{pq} b^q h^{-p} \tag{4}
$$

(\*) This work has been supported by the "Consejo de Desarollo<br>Científico y Humanístico", Project 128, UCV.<br>(1) S. Hietanen and L. G. Sillén, Acta Chem. Scand., 13, 533 (1959).<br>(2) L. G. Sillén and A. Martell, "Stability Co

1964).<br>(3) L. G. Sillén, *J. Inorg. Nuclear Chem.*, 8, 177 (1958).<br>(4) H. Dunsmore, S. Hietanen, and L. G. Sillén, *Acta Chem. Scand.*,<br>7, 2644 (1963).

in which Z is the average number of  $OH^-$  bound or  $H^+$ split per  $Mn^{2+}$  in equilibrium (1).

On the other hand, taking into account the  $HSO_4$ <sup>-</sup>- $SO_4^{2-}$  equilibrium, as we used  $SO_4^{2-}$  as counter ion, we have,

$$
B = b + \sum \sum q \beta^*_{pq} b^q h^{*-p}
$$
 (3a)

$$
BZ(=h^*-H)=\sum_{p}\sum_{q}p\beta^*_{pq}b^q\,h^{*-p}\qquad\qquad(4a)
$$

where,  $H$  is the total (analytical) concentration of  $H^+$ ,  $h^*$  represents the sum of the free concentration of  $H^*$ and  $H_{\text{S}}(t)$  and  $R_{\text{S}}$ , is an apparent stability constant. It can be shown<sup>6,7</sup> that  $h^*$  and  $R^*$  are given by the expressions

$$
h^* = (1 + K_1(1 - \Theta)) h
$$
 (5)

$$
\beta^*_{pq} = (1 + K_1(1 - \Theta))^{p} \beta_{pq}
$$
 (6)

where  $\Theta$  is the average number of H<sup>+</sup> bound as HSO<sub>4</sub><sup>-</sup> per  $SO_4^2$  and  $K_1$  is the stability constant for the  $HSO<sub>4</sub>$ -SO<sub>4</sub><sup>2</sup>- equilibrium. However, because K<sub>1</sub> $\simeq$ 2.5M<sup>-1 6</sup> and  $\Phi \approx 0$  for  $h < 10^{-3}M$ , it follows that  $h^*$ and  $\beta^*_{pq}$  are proportional to *h* and  $\beta_{pq}$ , respectively.

We measured *h\** by means of the cell

$$
REF// S/H2, Pt and glass electrode \t(7)
$$

where the reference half cell  $REF=1$  *M*  $Na<sub>2</sub>SO<sub>4</sub>/$ 0.99 M Na<sub>2</sub>SO<sub>4</sub>, 0.01 M Ag<sub>2</sub>SO<sub>4</sub>/Ag, AgCl was placed in a Wilhelm bridge<sup>8</sup> and the solution S was  $\bm{B}$  M MnSO<sub>4</sub>, *H*/2 *M* H<sub>2</sub>SO<sub>4</sub>, (1-B-H/2) *M* Na<sub>2</sub>SO<sub>4</sub>.

We found that at  $25^{\circ}$ C the emf of (7) follows<sup>6,7,9</sup> the equation

$$
E = E_o + kB + jh^* + 59.15 \log h^*
$$
 (8)

(6) A. Peterson, Acta Chem. Scand., 15, 101 (1961).<br>(7) A. Diaz, S. Mateo, and F. Brito, to be published.<br>(8) W. Forsling, S. Hietanen, and L. G. Sillén, Acta Chem. Scand.,<br>5, 901 (1952).



The constants *E,, k* and j were determined for *h\*> I* he constants  $E_0$ , k and *l* were determined for  $h^*$  $10^{-5}$  *M* when  $Z=0$ ; Z and  $-\log h^*$  were increased<sup>10</sup> generating  $OH^-$  in situ by electrolysis with the following cell



Figure 1. Z as a function of  $\log h^*$ . The curves are calculated

(10) G. Biedermann and L. Ciavatta, *Arkiv Kemi, 22, 253 (1964).* 

## (anode)Ag/O.l *M* NaCl,  $0.95 M \text{ Na}_2\text{SO}_4/1 M \text{ Na}_2\text{SO}_4/ \text{/S/Pt}$ (cathode) (9)

A constant current intensity of 1 mA was used.  $\frac{1}{2}$  constant current intensity of 1 mA was used.

The experimental data  $Z(\log h^*)_B$ , Figure 1, was treated by graphic methods<sup> $1,11$ </sup> and Letagrop.<sup>12</sup>

Using graphic methods we obtained information on the  $p$  values from each  $B$  constant curve and on the q values from the relative positions of all  $Z(\log h^*)_B$ curves assuming contancy of the activity factors. Letagrop was used then for testing the different hypotheses.  $T$  best fit was found for the complexes (p,q) with  $T$  and  $T$  with  $T$  and  $T$  and  $T$  and  $T$  an

The best int was found for the complexes  $(p,q)$  with the log  $\beta^*_{pq}$  and the standard deviations  $\sigma(Z)$  values indicated in Table I. Column 2 contains the  $\log \beta *_{pq}$ values obtained from the treatment of all data sets by graphic methods and column 3 the refinements on the latter by Letagrop. Finally, columns 4, 5, 6 and 7 show the refined stability constants for  $B = 0.1$ , 0.25, 0.5, and 1.0  $M$  respectively, assuming for each  $B$  constant curve the same values of  $(p,q)$  used in the previous treatment of all data sets.<br>Experimental work is continued.

(11) L. G. Sill&, *Acfa Chem. Stand.,* 8, 299 (1954); IO, 186 (1956). (12) N. Ingri and L. G. Sill&, *Acta Chem. Stand., 16,* 173 (1962).