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Spectroscopic studies (IR, Raman and 3C NMR)
on the complexes (acac)M{olefin), (M = Rh(I), Ir(I);
olefin = ethylene, propylene, vinyl chloride, vinyl
acetate, methyl acrylate and styrene) have been
carried out and are used to interpret the bonding
between the metal and the olefin. The metal—vlefin
bond is stronger for Ir than for Rh but the influence
of the substituent on the olefin is the same.

Introduction

Reports have recently appeared on the influence
of substituents on the olefinic group on the bonding
between a metal atom and a substituted olefin.
Cooper et al. [1] and Meester et al [2, 3] have
reported vibrational and NMR spectroscopic data for
a large number of Pt(ID)—olefin complexes, while
Tolman et al. [4] have published '*C NMR data for
Ni(0) compounds.

In this laboratory work is being carried out on the
correlation of thermochemical data concerning the
metal-ligand bond with vibrational (IR and Raman)
and NMR data (*C) [S]. In particular, we are
interested in complexes of the type (acac)M(CH,=
CHX), (M = Rh(]), I(T); CH,=CHX = ethylene (ET),
propylene (PR), vinyl chloride (VCl), vinyl acetate
(VA), methy! acrylate (MA) and styrene (ST)), and
also their relation to the dicarbonyl complexes,
(acac)M(CO),. In this article the vibrational and
NMR spectroscopic data are reported and used for a
discussion of the metal—olefin bond. In a following
article the thermochemical data will be reported and
discussed in the light of the present findings.

Experimental

Preparations

Olefin complexes

(acac)Rh(ET), and (acac)Ir(ET), were prepared
according to literature methods [6, 7]. The other
complexes were obtained by displacement of ET in the

*To whom correspondence should be addressed.

complexes (acac)Rh(ET), or (acac)I(ET), by an
excess of olefin, following a procedure described by
Cramer [8]. With the exception of PR the undiluted
olefin was used as the solvent. In order to prevent
polymerisation, the liquid olefin was distilled directly
before use. After reaction, the excess of olefin was
removed under vacuum and the resulting oil or solid
dissolved in ether or pentane. The solution was forced
through a layer of silicagel (Merck 0.063—0.200 mm).
At low temperature (—20 to —80 °C) crystals were
obtained and isolated by filtration. All reactions were
carried out under dry, oxygen-free nitrogen.

All complexes are bright yellow as a powder, but
they darken to orange when the crystals become
larger. The PR and VCl complexes easily form oils.
The complexes could be kept without decomposition
for about a month at —20 °C except for (acac)lr-
(PR), which decomposes within a week.

Dicarbonyl complexes
The complexes (acac)Rh(CO), and (acac)Ir(CO),
were not prepared according to literature methods [9,
10] but by passing CO through a solution of (acac)-
M(ET), in hexane for one hour. The precipitate was
filtered off and recrystallised from warm hexane.
The analytical data are listed in Table 1.

Spectroscopic Measurements

Infrared spectra of the solid compounds (KBr
pellets) were recorded on a Beckman 4250 spectro-
photometer. Raman spectra of the solid compounds
were obtained using a Coderg PH1 spectrophotometer
with dc detection. The 6471 A line of a CRL 52 Kr’
laser was used as the exciting line. The dicarbonyl
complexes and (acac)Ir(VCl), decomposed in the
laser beam, even at —190 °C. Raman spectra of solu-
tions gave poor results. *C NMR spectra were
measured in CDCl; at 20 MHz on a Varian CFT 20
spectrometer with full proton decoupling. For most
compounds 40,000 pulses (A.T. =1 sec, P. D. = 0.8
sec) were necessary to give reasonable spectra. 3C
chemical shifts were measured relative to CDCl; and
are reported in ppm downfield from TMS using § s
= 6CDCI3 —-76.9 ppm.
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TABLE L. Analytical Data for (acac)M(olefin), and (acac)M(CO),.

A. C Jesse, M. A. M. Meester, D. J. Stufkens and K. Vrieze

(acac)Rh(olefin), (acac)Ir(olefin),

%C %H %0 %C %H %0
Olefin calc. found calc. found calc. found calc. found calc. found calc. found
ET 41.88 41.82 5.86 5.90 12.40 12.32 31.12 31.17 435 437 9.21 9.38
PR 46.16 45.89 6.69 6.75 11.18 11.69 35.19 35.25 5.10 5.01 - -
V(2 33.06 33.12 4.01 4.04 10.22 10.05 25.97 26.04 3.15 3.32 7.69 7.84
VA 41.73 41.73 5.12  5.15 25.57 25.39 33.69 33.84 4.13 4.19 20.71 20.63
MA 41.73 41.70 5.12  5.20 25.57 25.60 33.69 34.00 413 4.28 20.71 20.55
ST 61.47 61.48 5.65 5.81 - - 50.49 50.48 464 4.74 6.48 6.54
cO 32.58 3245 2.73 2.69 24.80 24.79 24.21 24.04 2.03 2.08 18.43 18.48

2 For (acac)Rh(VCl),; % Cl: calc. 21.68; found 21.63.
For (acac)l(VCl),; % Cl: cale. 17.03;found 16.79.

Results

Vibrational Results

The infrared and Raman data for the Rh and Ir
complexes in the region 1200-1600 cm™! are col-
lected in Tables I and I11 respectively. A typical
Raman spectrum is shown in Fig. 1.
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Figure 1. Raman spectra of (acac)M(ET);, for the solid state.

By comparing the spectra of different olefin com-
plexes both with each other and with spectra of
(acac)Rh(CQ), and (acac)Ir(CQ), it was established
that only three vibrations of the olefin shift signifi-
cantly upon coordination. The frequencies in italics
belong to the acetylacetonate ring. The three bands
which shift belong to the coupled modes »(C=C),
8(CH;)gcis and 8(CHyeng, and are labelled I, It and
III in accordance with the notation of Powell et
al [11].

NMR Results

The C NMR data of the complexes are given in
Table IV and a typical spectrum is shown in Fig. 2.
The shifts of the carbon atoms of the acetylacetonate
ring do not show appreciable variation with olefin
and the shifts of the olefin-substituent carbon atoms
do not change greatly upon coordination. The C; and
C, carbon atoms of the acetylacetonate ring occur as
doublets or multiplets in some cases. 1t is assumed
that the resonance at lower field belongs to the
substituted olefinic carbon atom C, and the
resonance at higher field belongs to C, [3]. In the
case of MA 8C, and 8C, were not sufficiently
separated, since the resonances were broad. For the
same reason off-resonance spectra did not give
additional information. At room temperature, the
olefinic carbon atoms show rather broad C reso-
nances with a halfwidth varying from 20 Hz in the ET
complexes to 50 Hz in the ST complexes, regardless
of the metal. The spectra of the complexes of PR, VA
and VCI clearly show more than one resonance for
each olefinic carbon atom, which, in the case of
(acac)Rh(PR),, is probably due to the presence of
two isomers [13].

When cooled to —60 °C, the olefinic carbon
resonances in (acac)Rh(VCl), sharpened and six
doublets for each olefinic carbon atom were found.
These doublets are due to the ®*Rh-13C coupling
which varies from 14.9 to 17.2 Hz. At —60 °C the C,
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RA(I) and Ir(I) Olefin Complexes 133
TABLE IV, Carbon-13 NMR of (acac)M(clefin),, M = Rh, Ir, in CDCl3 2.

Olefin (acac) Ring

8¢, 8c, $co 8CH 5CH;

Free? Rh Ir Free Rh It Rh It Rh It Rh Ir
ET 122.8 59.4 40.9 122.8 59.4 40.9 186.4 186.7 98.9 100.9 27.1 27.4
PR 115.0 614 46.7¢ 131.1 73.0 54.6¢ 185.7 185.6¢ 98.7 101.2¢ 27.1 27.4¢
vCl 117.4 60.5 41.0 126.1 81.8 60.7 186.6 186.8 99.1 101.2 27.0 26.8
VA 96.4 424 27.9 141.7 97.9 78.2 186.3 186.6 99.1 101.1 26.9 27.1
MA 129.9 614 42.0 128.7 61.4 42.0 186.2 187.1 98.9 101.1 26.8 27.2
ST 1123 54.2 38.3 135.8 73.9 55.1 185.5 185.2 98.4 100.3 26.9 27.0

2The chemical shifts were measured at room temperature relative to TMS, using 5TMS = 6(3])(313 — 76.9 ppm. The given shifts

are mean positions, see text. P Ref. 12. ¢ Spectra at —40 °C.
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Figure 2. 13C NMR spectra of acacM(ST), in CDCl;.
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and C, carbon atoms of the acetylacetonate ring give
six resonances for (acac)Rh(VCl),. This agrees with
the ten isomers, eight of which form four enantio-
meric pairs, as described by Herberhold et al. [14].

For the above reasons shifts of the olefinic carbon
atoms in Table IV represent the weighted mean of all
resonances. '®Rh—'2C coupling at room temperature
is also clearly observed in the ET, PR and VA spectra.

The mean upfield shifts of the olefinic carbon
atoms upon coordination varies from 49-68 ppm for
the Rh compounds, which does not agree with the
upfield shift of 86 ppm for (acac)Rh(ET), reported
by Bodner et al. [15].

For the Ir compounds the mean upfield shifts
upon coordination are 67—-87 ppm. To our knowledge
only Bonnaire et al. [16] have published '*C NMR
data on Ir(I)-olefin complexes. These were of the
type (8-diketone)Ir(1,5-COD) (see Table VI).

The proton spectra of the complexes exhibited
very broad resonances for the olefinic protons being
barely observable. These spectra were only used for
identification purposes.

Discussion

Complexes are reported of the type (acac)M-
(olefin); (M = Rh, Ir), of which (acac)Ir(PR),,
(acac)Ir(VCl),, (acac)Ir(VA),, (acac)lr(MA), and
(acac)Ir(ST), were prepared for the first time.

According to the known structure of (acac)Rh-
(ET), [17] the (acac)Rh group is nearly planar and
the olefinic groups are perpendicular to this plane.
Molecular models show that for the other olefins
steric hindrance can be expected.

The bond model of Dewar, Chatt and Duncanson
[18] shows that the double bond character of the
olefin will decrease upon coordination. A measure for
this weakening of the double bond is the lowering in
frequency of ¥(C=C) which is, however, coupled to
the modes 8 (CH; )geis and/or 6§ (CH)peng depending on
the olefin [3].

Powell ef al. [11, 19] have shown that the sum-
med percentage lowering of the W(C=C) and §(CH} )g.is
in ET complexes is a measure for this decrease in
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TABLE VI Mean Shifts of Olefinic Carbon Atoms and Chemical Shift Differences after Coordination (in ppm).

§PCrean® 88BCrmean® 813(C,-Cyp)

free Rh Ir Rh Ir free Rh Ir Pt¢
VA 119.0 70.2 51.6 48.8 67.4 45.3 55.5 50.3 55.2
val 121.8 71.2 50.4 50.6 71.4 8.7 21.3 19.7
PR 124.0 67.2 50.7 56.8 73.3 18.1 11.6 7.9 24.3
ST 124.0 64.1 46.7 59.9 713 23.5 19.7 16.8 31.8
ET 122.8 594 40.9 63.4 81.9 0 0 0 0
MA 129.3 61.4 42.0 67.7 87.3 -1.2 3.1
copd 128.5 75 59.3 52.6 69.3

85 13C 1 can = %2(8 PC, + 8 13C,). P 88 B3Crhean = 8 3Cpeanlligand) — 6 13Cp, can(complex). © Ref. 3. 9 Ref. 16.
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