19

Reactions of Cyclopentadienyhnetal-2-Alkenyl Carbonyl Complexes with Sulfur Dioxide. Isolation and Characterization of 2-AlkeneS-Sulfinato Products

L. S. CHEN, S. R. SU, and A. WOJCICKI*

The McPherson Chemical Laboratory, The Ohio State University, Columbus, Ohio 43210, U.S.A. Received July 11, 1977

Transition metal-2-alkenyl complexes q5-C5HSFe- $(CO)_2CH_2C(R)=CR'R''$ (R, R', and R'' = H and/or CH_3) and η^5 -C₅H₅Mo(CO)₃CH₂CH=CH₂ react rapid*ly with liquid* SO_2 *at* -10 *°C or below to afford the corresponding zwitterions,* η^5 -C₅H₅Fe⁺(CO)₂(η^2 - $CH_2=Cl(R)/C(R')/R''/SO_2^-$ and $\eta^5-C_5H_5Mo^+(CO)_3^-$ *(q2-CH,=CHCH,SO;), respectively. These zwitterions were characterized by infrared and 'H NMR* spectroscopy and, in the case of n^5 -C_sH_sFe⁺(CO)₂- $(\eta^2$ -CH₂=CHCH₂SO₂), also by conductivity measure*ments and alkylation with* $(CH_3)_3OBF_4$ *and* $(C_6H_5)_3$ *-CCl to give* $[\eta^5$ -C₅ $H_5Fe(CO)_2(\eta^2$ -CH₂=CHCH₂S(O)₂- R ⁺*X*⁻ (R = CH₃ and (C_6H_5)₃C). Upon storage in liquid SO₂ the zwitterions were found by infrared *and 'H NMR spectroscopy to rearrange to the corresponding S-sulfnato complexes in the approximate order* η^5 -C₅H₅Fe⁺(CO)₂(η^2 -CH₂=CHC(CH₃)₂SO₂) \geq η^5 -C₅H₅Fe⁺(CO)₂(η^2 -CH₂=C(CH₃)CH₂SO₂) > η^5 - $C_5H_5Fe^+(CO)_2/\eta^2$ -CH₂=CHCH(CH₃)SO₂) > η^5 -C₅- $H_5Fe^+(CO)_2(\eta^2~CH_2=CHCH_2SO_2^-)$ and $\eta^5~C_5H_5Mo^+$. $(CO)_3(\eta^2 - CH_2 = CHCH_2SO_2^-) > \eta^5 - C_5H_5Fe^+(CO)_2(\eta^2 CH_2=CHCH_2SO_2^-$). The rearrangement of η^5 -C₅H₅- $Fe[†](CO)₂(\eta² - CH₂=CHCH₂SO₂)$ to the S-sulfinate $\eta⁵$ -C₅H₅Fe(CO)₂S(O)₂CH₂CH=CH₂ occurs concomi*tantly with the formation of a cycloaddition product, formulated as* η^5 -C₅H₅Fe(CO)₂CHCH₂S(O)₂CH₂. *This cycloadduct is unstable toward dimerization and/or trimerization, especially in solution, yielding a readily isolable* $[\eta^5$ -C₅ $H_5Fe(CO)_2(C_3H_5SO_2)]$ 2 or 3. *The molybdenum zwitterion qs-CsHsMo'(CO),(q2- CH,=CHCH,SO;) displays a parallel behavior in rearrangement. Various factors that affect the formation of these products and possible mechanisms of these reactions are presented and discussed.*

Introduction

Transition metal-2-alkenyl complexes react with a host of unsaturated electrophilic molecules to afford products of $(3 + 2)$ cycloaddition of the electrophile to the 2-alkenyi fragment with concomitant 1,2 metal migration (eq 1) $[1-5]$. A list of electrophiles (E=N) that cycloadd in this fashion includes, *inter alia,* (CN)₂C=C(CN)₂ [5-7], F₃C(CN)C=C(CN)CF₃ [2], CISO₂NCO [5, 8, 9], p -CH₃C₆H₄SO₂NCO [5, 9], $(CF_3)_2CO$ [10], and CH_2SO_2 [5].

In contrast to the products of these cycloadditions, insertion derivatives are obtained when transition metal-2-alkenyl complexes react with $SO₂$ [11-13], $SnCl₂$ [14] or NCC=CCN [15] (eq 2). The observed insertion of $SO₂$ is particularly intriguing since the reaction of $SO₂$ with the corresponding transition metal-2-alkynyl complexes proceeds instead to $(3 + 2)$ cycloadducts [16]. It has been proposed [7] that the cycloaddition and insertion reactions of the metal-2-alkenyl complexes in point occur via a common type of dipolar intermediate **(l),** but until recently direct evidence for such a species had been lacking. The combined detection and interception of the zwitterion 1 for $E=N$ being SO_2 , reported by us in a preliminary communication [171, has provided strong support to the above proposal.

Reported now is a full account of the characterization of the initially formed dipolar products of the reaction between some cyclopentadienylmetal-2 alkenyl carbonyl complexes and $SO₂$. Subsequent reactions of these zwitterionic intermediates to yield products other than the appropriate metal S-sultinates are also considered here in detail. However, the characterization of the metal S-sulfinates derived from these reactions is the subject of the accompanying paper [18].

^{*}Fellow of the John Simon Guggenheim Memorial Foundation, 1976, and author to whom correspondence should be addressed.

2-Alkenyl Complex	$\nu(C=0)$, cm ⁻¹ b		η^5 -C ₅ H ₅ Resonance, τ^c	
	Intermediate (3)	$S\text{-}Sulfinate(4)$	Intermediate (3)	S -Sulfinate (4)
2a	2085, 2050	2066, 2022	4.36	4.78
2 _b	2084, 2049	2065, 2022	4.36	4.75
2c	2079, 2041	2065, 2020	4.30	4.75
2d	2078, 2040	2066, 2022	4.40	4.77

TABLE I. Infrared $\nu(C=O)$ Absorptions and ¹H NMR η^5 -C₅H₅ Resonances of Zwitterionic Intermediates (3) and S-Sulfinato Products (4) of the Reaction of Iron-2-Alkenyl Complexes (2) with Liquid Sulfur Dioxide.^a

^a All measurements were made in liquid SO_2 . $b_{\pm 1}$ cm⁻¹. All absorptions are very strong. ^c \pm 0.02 ppm. All resonances are singlets.

Results and Discussion

Reaction of qs-C5H5Fe(CO)2CH2C(R)=CR'R" where R, R' and/or R" = CH3 with Sulfur Dioxide

 \mathbf{b} 2-alkenyl complexes 2b-d react rapidly with eat $SO₂$ at -35 to -18 $^{\circ}$ C. Thus 5-10 min old solutions of $2b-d$ in liquid SO_2 show two intense infrared ν (C=O) absorptions at 2084-2078 and 2049-2040 cm^{-1} . They are listed in Table I. The frequencies of these bands are much too high to be ascribed to the parent 2-alkenyl complexes, which absorb in the ranges 2018-2005 and 1962-1945 cm^{-1} [6, 18, 19]. However, they are virtually identical with those of cationic complexes of the type $[\eta^5$ -C₅H₅Fe(CO)₂ $(\eta^2$ alkene)] X^{-} [5, 19] or $[\eta^{5}$ -C₅H₅Fe(CO)₂(η^{2} -allene)] X^{-} [20, 21].

The rapid reaction of $2b-d$ with $SO₂$ is corroborated by the ¹H NMR measurements on freshly prepared solutions of these complexes in liquid $SO₂$ at -39 to -22 °C. In the η^5 -C₅H₅ region (τ 4.0 -5.5) a strong resonance is observed at τ 4.30–4.40 (Table I), whereas the corresponding resonance of the parent 2-alkenyl complex, expected at approximately τ 5.1-5.3 $[6, 18, 19]$, is missing. The position of the signal at τ 4.30-4.40 accords with the positive charge on the iron as, e.g., in $[\eta^5$ -C₅H₅Fe(CO)₂(η^2 -alkene)] 'X⁻ 15,191.

2a in liquid $SO₂$ in conjunction with the trapping of the zwitterion 3a in these solutions by methylation with $(CH_3)_3OBF_4$ (*vide infra*). Attempts to isolate 3b-d by rapid removal of the solvent from freshly prepared (as well as aged) solutions of 2b-d in liquid $SO₂$ afforded only the corresponding S-sulfinato complexes, 4b-d.*

Storage of solutions of $2b-d$ in liquid $SO₂$ at -39 to -18 °C also gives rise to the formation of 4b-d. This transformation was followed by monitoring the $\nu(C\equiv 0)$ region in the infrared spectrum and the n^5 - C_5H_5 resonance region** in the ¹H NMR spectrum. In the former, $\nu(\overline{C}=0)$ absorptions of 4b-d appear and grow at $2066 - 2065$ and $2022 - 2020$ cm⁻¹ (Table I) as the intensities of the corresponding bands of 3bd decrease. The two sets of the $\nu(C\equiv O)$ absorptions attain comparable intensities*** as a function of the allyl fragment in the order $3c \sim 3d > 3b$. The approximate times required to obtain such spectra are provided in Table II.

In the ¹H NMR spectra of 2b-d in liquid SO_2 new η^5 -C₅H₅ resonances grow in at τ 4.75-4.77 as the intensities of the signals at τ 4.30–4.40 decrease. The relative rates of the conversion of 3 to 4 follow the order $3c \ge 3d > 3b$ which is essentially that observed by infrared spectroscopy. However, as may be seen in Table II, the rates of the conversion appear to be faster under the conditions of the NMR measurements than under the conditions of the infrared measurements.

This apparent discrepancy is most likely a consequence of the different concentrations of 2b-d

The above infrared and 'H NMR spectral data suggest the presence of the zwitterionic species 3b-d in these solutions. The proposed formulation receives strong support from the strictly parallel behavior of

^{*}The isomerism of the ally1 fragment in these complexes $(i.e.$ structures 4) is discussed in the following paper (ref. 18). **The rest of the ${}^{1}H$ NMR spectrum is much less informative because of its complexity and/or poor resolution. Accordingly it is not considered in the paper.

^{***}At this point the concentrations of the two species are not equal, since specific intensities increase as the frequencies decrease for the CO stretching of a series of isoelectronic and isostructural compounds. Accordingly the concentration of 4b-d is still lower than that of 3b-d. For a review of and references to intensities of ν (C \equiv O) bands see ref. 22.

Zwitterionic Intermediate ^a		Infrared Measurements		¹ H NMR Measurements	
	Temp, °C	Approx. half-life, min ^{b,c}	Temp, °C	Approx. half-life, min ^b	
3a	-18	200			
3 _b	-18	120	-22	100	
3c	-35	100	-39	45	
3d	-35	110	-39	60	

TABLE II. Approximate Half-Lives for Rearrangement of Zwitterionic Intermediates (3) to S-Sulfinato Products (4) in Liquid Sulfur Dioxide.

^aConcentration \sim 7 \times 10⁻³M for the infrared measurements and \geq 0.2M for the ¹H NMR measurements. ^b ±10 min. ^cActually the times given are those required for the ν (C=O) absorptions of 3 and 4 to reach comparable intensities and are less than the true half-lives for the reaction; see a footnote in the text. However, the error introduced in making this approximation is thought to be uniform for all four zwitterions, $3a-d$. ^dNot applicable since the rearrangement $3a$ to $4a$ is a relatively minor reaction under these conditions; see the text.

employed in the two experiments. The faster rates observed in the NMR experiments, where concentrations of 2b-d were at least 30 times as high as those in the infrared experiments, suggest that the rearrangement in question is at least in part bimolecular (or of a higher molecularity), becoming more so at the higher concentrations. This somewhat surprising result of an associative pathway for the decomposition of 3b-d would be consistent with nucleophilic attack of the negative pole of one zwitterion 3b-d at the positive iron of another 3b-d to displace the dihaptocoordinated alkenesulfinate anion as shown in eq (3). The generated ions would then combine to

3b-d+4b-d (3)

give rise to the observed apparent insertion. It is further significant that the relative rates of this rearrangement of 3b-d follow approximately a decreasing order of stability of the iron- η^2 -alkenesulfinate bonds expected on the basis of the increasing extent of methyl substitution in the ally1 fragment [S, 231.

Reaction of η^5 *-C₅H₅Fe(CO)₂CH₂CH=CH₂ with Sulfur Dioxide*

Dissolution of $2a$ in liquid SO_2 initially leads to a behavior which is very similar to that described above for the methyl-substituted iron-2-alkenyl compounds 2b-d. However, the generated zwitterion 3a displays a more complex chemistry than 3b-d and hence the entire reaction is treated separately.

The infrared spectrum of a freshly prepared solution of $2a$ in liquid SO_2 shows that the starting

material has been completely converted to a species with two $\nu(C\equiv 0)$ bands at higher frequencies. Likewise, only one η^5 -C₅H_s resonance is detectable in the 'H NMR spectrum, and it occurs at a considerably lower field compared to that of 2a [19]. These data are included in Table I. Both changes are consistent with the formation of the zwitterion 3a as already discussed for the other complexes. In further support of the formulation 3a is a virtual lack of conductivity of a freshly prepared solution $(1.2 \times 10^{-2} M)$ of 2a in liquid SO₂ at -70 °C. The measured value, Λ_M = 2.24 ohm⁻¹ cm², contrasts with a Λ_M of 84 ohm⁻¹ cm² for $[\eta^5$ -C₅H₅Fe(CO)₂P(C₆H₅)₃]⁺PF₆ [24] which is in the region expected for 1:1 electrolytes [25] Hence ionic structures such as $[\eta^5$ -C₅H₅Fe- $(CO)_2SO_2$ ⁺ $O_2SC_3H_5$, equally consistent with the infrared and ¹H NMR data as 3a, are precluded on this basis.

A number of reactions have been carried out with the freshly generated $3a$ in liquid SO_2 . Addition of a large excess of KI afforded after work-up η^5 -C₅H₅Fe- $(CO)₂I$ and the S-sulfinate 4a as the principal and minor products, respectively. The complex η^5 -C₅H₅- $Fe(CO)₂$ I no doubt arises through replacement of the dihaptocoordinated alkenesulfinate anion by iodide. Similar substitution of the alkene ligand in $[\eta^5{\text -}C_5H_5{\text -}C_6H_6{\text -}C_7H_7{\text -}C_8H_8{\text -}C_7H_8{\text -}C_8H_8{\text -}C_8H_8{\$ $Fe(CO)₂(\eta^2$ -alkene)] 'X⁻ by iodide has been reported [26]. Complex 4a is formed by rearrangement of 3a as will be discussed later.

Treatment of $3a$ in liquid $SO₂$ with gaseous HCl led to the formation of the known cation Sa, isolated as the PF₆ salt, and of a trace amount of η^5 -C₅H₅Fe- $(CO)₂Cl$. The cation 5a likely arises through initial protonation of the sulfinate terminus of 3a, probably

$$
\bigodot \hspace{-0.3cm} \leftarrow \hspace{-0.3cm} \leftarrow
$$

at oxygen, followed by loss of $SO₂$ as shown in eq (4). Surprisingly, the same compound was isolated when $3a$ was treated with $CH₃SO₃F$ followed by

 NH_4PF_6 . This result can be rationalized only on the assumption that the added $CH₃SO₃F$ contained a more reactive acid impurity.

Methylation of 3a in liquid SO_2 with $(CH_3)_3OBF_4$ afforded the iron- η^2 -(allyl methyl sulfone) cation isolated as the yellow BF_4^- and PF_6^- salts, $6a-a'$, respectively, These compounds are readily soluble in acetone, sparingly soluble in $CHCl₃$, and insoluble in benzene and pentane. They are somewhat air-sensitive in the solid and decompose gradually upon storage in solution. The proposed structures are based on the conductivity measurements which show 6a to be a 1:1 electrolyte in acetone*, the infrared $\nu(SO_2)$ values typical of the organic sulfones [28], and the relatively high infrared $\nu(C=0)$ values as well as the rather deshielded ¹H NMR η^5 -C₅H₅ resonance of 6a', both of which point to the positive charge at the iron [S, 19-2 1] . Complex **6a** was also reported recently by Rosenblum, *et al.* [4] .

$$
\bigodot \leftarrow \begin{array}{ccc}\nC & R_2 & R & * \\
F & -\parallel & S & 0 \\
C & H_2 & S & 0 \\
\end{array}\right)
$$
\n
$$
6a \quad R = CH_3, \quad X = BF_4
$$
\n
$$
6a' \quad R = CH_3, \quad X = PF_5
$$
\n
$$
7a \quad R = (C_6H_5)_{3}C, \quad X = PF_6
$$

The trapping of the zwitterion $3a$ in liquid $SO₂$ was also achieved by the use of $(C_6H_5)_3CCl$, with the resulting cation having been isolated as the yellow PF₆ salt, 7a. This complex has solubility and stability properties comparable to those of $6a-a'$. Its structural formulation likewise rests on conductivity, infrared $\nu(SO_2)$ and $\nu(C=O)$, and ¹H NMR data, which are furnished in the Experimental.

Storage of liquid SO_2 solutions of 3a leads to a behavior that appears to be considerably influenced by the concentration of the zwitterion. At the lower concentrations (\sim 7 \times 10⁻³ *M*), the infrared spectrum in the $\nu(C \equiv 0)$ region reveals the appearance and growth of the bands of the S-sulfinato complex 4a (Table I). In addition, however, a shoulder at *ca.* 2005 cm^{-1} and a broad absorption at $1967-1960$ cm^{-1} become discernible; they are assigned to another, in this case relatively minor product(s) (8a and/or 9a) that will be discussed fully later in the paper. The spectrum recorded *ca.* 200 min after dissolution of 2a in liquid SO_2 at -18 °C is shown in Fig. 1.

Figure 1. Infrared spectrum in the ν (C=O) region (in cm⁻¹) of a solution of $2a$ in liquid SO_2 aged for *ca.* 200 min at $-18 °C$.

The ¹H NMR spectrum in the region τ 4.0–5.5 of the more concentrated $(\ge 0.2M)$ 3a in liquid SO₂ undergoes the following changes with time at -22 °C. The signal at τ 4.36 of 3a decreases in intensity and resonances appear at τ 4.78 of 4a and 5.00. This is followed by a gradual appearance of yet another signal, at τ 5.03, and a diminution of intensity of the

Figure 2. ¹H NMR spectrum in the η^5 -C₅H₅ resonance region of a solution of $2a$ in liquid SO_2 aged for ca . 120 min at -22 $^{\circ}$ C. The chemical shifts are in τ .

^{*}Molar conductivities for *ca.* 10^{-3} *M* solutions of 1:1 electrolytes in acetone are in the range $100-150$ ohm⁻¹ cm² (ref. 27).

peak at τ 5.00. At 140 min the intensities of the η^5 . C_5H_5 resonances reflect the following composition of the solution: unreacted 3a 25%, 4a 16%, and the two species (8a and 9a) absorbing at τ 5.00 and 5.03 combined 59%. A representative spectrum of the solution showing the resonances of the four compounds is reproduced in Fig. 2. After the signal at τ 4.36 has virtually disappeared, the combined intensity of the resonances at τ 5.00 and 5.03 remains constant, with the latter increasing and the former decreasing. The limiting spectrum, obtained after approximately 5 days, shows only the peaks at τ 4.78 and 5.03 of the relative intensity 2:7.

To summarize, at the lower concentrations the zwitterion 3a appears to rearrange preferentially to the S-sultinate 4a; at the higher concentrations its rearrangement to the products 8a and 9a seems to be favored. A discussion of this difference in behavior will be deferred until the structures of 8a and 9a are considered in the following subsection of the paper.

Isolation and Characterization of $[n^5 \text{-} C_5 H_5 Fe(CO)$. $(C_3H_5SO_2)$ x

Rapid removal of the solvent from a freshly prepared solution of $2a$ in liquid $SO₂$ afforded yellow 8a along with some $(\sim 5\%)$ 4a. Since 8a undergoes dimerization and/or polymerization upon storage in solution, all measurements performed with a view to characterizing this complex were carried out rapidly on freshly made solutions. The molecular weight of 8a obtained in this manner by osmometry in CHCl₃ was only l-2% higher than the theoretical value for the monomeric composition. It was not possible to obtain a meaningful mass spectrum of 8a because of a reaction to form 9a and decomposition. Elemental analyses were not attempted, since the compound gradually and cleanly converts to its dimer or trimer, 9a, which was satisfactorily characterized by microanalyses.

The ¹H NMR spectrum of 8a recorded a few minutes after dissolution in $CHCl₃$ showed two cyclopentadienyl resonances, an intense one at τ 5.03 (τ 5.00 in SO_2) and a weak one at τ 5.08 (τ 5.03 in $SO₂$). The latter signal is assigned to **9a**; its intensity has been used to measure the monomeric purity of 8a in solution. Both resonances accord with structures containing an Fe-C σ bond [2, 6, 8, 10]. Additionally, poorly resolved, complex absorption patterns occur at τ 6.5 and 7.8, corresponding to four and one hydrogens, respectively. The position of the first resonance compares satisfactorily with that reported for the α -CH₂ protons of thietene dioxide, $CH₂S(O)₂CH₂CH₂$ (τ 5.86) [29], and of the second with those of the secondary alkyl protons of Fe-CH $[2, 5, 6, 8, 10]$.

In the infrared spectrum of 8a, the $\nu(\vec{\theta})$ absorptions are typical of those of the secondary alkyl complexes η^5 -C₅H₅Fe(CO)₂R [2, 5, 6, 8, 10], and the $\nu(SO_2)$ bands indicate the presence of an organic sulfone group [28] . Hence combined evidence from the osmometric and 'H NMR and infrared spectroscopic measurements points to structure 8a for this 1:1 adduct of $2a$ and $SO₂$. In further support of the presence of an Fe-C σ bond in 8a is the formation of η^5 -C₅H₅Fe(CO)₂Cl upon cleavage with gaseous HCl. The other product of this cleavage, an organic sulfone, could not be isolated pure for full characterization.

Storage of solutions of 8a in $CH₂Cl₂$, CHCl₃ or liquid SO₂, *inter alia*, leads to the formation of 9a, which is less soluble than 8a and precipitates as a rellow solid from hexane/ CH_2Cl_2 . The same complex forms upon heating 8a at 100 "C for 10 hr under nitrogen. It can be also obtained directly from 2a by reaction with liquid sulfur dioxide for various lenghts of time, evaporation of excess $SO₂$, and chromatography to remove co-product 4a. Longer reaction times decrease the ratio of 9a to 4a, as the 4a continually generated from the zwitterion 3a in liquid $SO₂$ appears not to rearrange to 8a or 9a even upon removal of the solvent. Passage of gaseous $SO₂$ into a pentane solution of 2a likewise affords 9a and 4a upon work-up. It seems that column chromatography on Florisil or alumina ensures conversion of 8a to 9a after these reactions.

The structure of 9a is not entirely evident from the data on hand. Elemental analyses, including oxygen, agree well with the empirical formula of 8a (and of the isomeric 4a). This is not surprising since the compound is derived by a clean aggregation of 8a. The closely agreeing oxygen analysis is particularly important as it migrates the possibility of a sulfonate formulation, $[\eta^5 \text{-} C_5 H_5 Fe(CO)_2 (C_3 H_5 SO_3)]_x$. The osmometrically determined molecular weight of 9a in CHCla varies somewhat from one preparation to another, but generally falls just above the value calculated for a dimer of 8a. Since 9a can be readily converted to insoluble, presumably more highly aggregated units of 8a (vide *infia),* it is thought to be comprised of more than one species $[\eta^5$ -C₅H₅Fe- $(CO₂(C₃H₅SO₂)$, with the predominant component apparently being a dimer.

The infrared and 'H NMR spectra of 9a are very similar to those of 8a. The values of $\nu(C=0)$ are virtually the same for the two compounds; the $\nu(SO_2)$ spectral region of 9a is richer than that of 8a although still diagnostic of an organic sulfone structure. In the ¹H NMR spectrum of 9a complex absorption patterns occur in the same regions and with comparable relative intensities as for 8a. The mass spectrum exhibits peaks due to $C_5H_5Fe(CO)_2C_3H_5SO^+$ and a few species $C_5H_5Fe(CO)_5C_3H_5^*$ and $C_5H_5Fe(CO)_5CH^*$ $(x = 0, 1 \text{ or } 2)$, with some of these assignments having been made on the basis of the exact mass values. Complex 9a, just as 8a, undergoes cleavage by gaseous HCl to yield η^5 -C₅H₅Fe(CO)₂Cl and an organic sulfone that could not be fully characterized.

The remarkable resemblances in the infrared and ¹H NMR spectroscopic data of 8a and 9a, the appearance of certain mass spectral peaks for 9a, and the observed course of cleavage of both compounds by HCl all suggest similar structural features for 8a and 9a. The proposed structure of dimeric 9a, although admittedly somewhat speculative, accords with these data and observations. Attempts were made to grow crystals of 8a and 9a for X-ray crystallography; however, they proved unsuccessful.

Prolonged storage of 8a or 9a in solution leads to the formation of insoluble, presumably more highly aggregated species $[\eta^5 \text{-} C_5 H_5 Fe(CO)_2(C_3 H_5 SO_2)]$. However, no attempts were made at their characterization.

It is of interest that η^5 -C₅H₅Fe(CO)₂CHCH₂CH₂- $S(O)_{2}CH_{2}$, the higher homolog of 8a, is stable with respect to aggregation. Instead it rearranges to n^5 . $C_5H_5Fe(CO)_2S(O)_2CH_2CH_2CH=CH_2$ in high yield upon heating [7]. In contrast, 9a afforded only a trace of 4a when heated at $110-125$ °C for 48 hr. The instability of 8a may be ascribed to steric strain in its four-membered sulfone ring, but continued reactivity of 9a in solution cannot be given a simple rationalization.

The question of mechanism of rearrangement of the zwitterion 3a to 4a and 8a (possibly along with 9a) will be addressed next. A reasonable explanation of the preferential formation of 4a at the lower concentrations of 3a, and of 8a at the higher concentrations of 3a follows.

At the lower concentrations of 3a, employed in the infrared measurements, unimolecular rearrangements are expected to be more important relative to bimolecular rearrangements. Under these conditions the primary process appears to be dissociation of the η^2 -alkenesulfinate anion from 3a and subsequent recombination of the ions to yield 4a. It is noteworthy that this reaction, whether completely unimolecular or in part bimolecular (eq 3), proceeds more slowly than the corresponding rearrangement of the zwitterions 3b-d (Table 11). The difference probably arises from the stronger iron- n^2 -alkenesulfinate bonding in 3a than in 3b-d, since transition metal- η^2 -alkene bonds tend to be destabilized by alkyl substitution in or adjacent to the $C=C$ fragment [5, 23]. The competing ring closure reaction of 3a to afford 8a is a relatively slow process under these conditions, suggesting that it does not occur readily in a unimolecular fashion. The reason for this behavior is not obvious, but it may be a combination of such factors as considerable flexibility of the dihaptocoordinated alkene sulfinate anion, low nucleophilicity of the sulfinate terminus, and insufficient activation of the η^2 -alkene moiety by the metal toward nucleophilic attack. In this context it is of interest to note that the zwitterions 3b-d do not react by such ring closure. There the iron binds the η^2 -alkene moiety more weakly than in 3a and apparently activates it less effectively toward attack by the sulfinate anion.

At the higher concentrations of $3a$, used in the ${}^{1}H$ NMR measurements, the rate of the formation of 8a (possibly along with 9a) increases markedly compared to the rate of the generation of 4a. This would seem to indicate a bimolecular (or a higher molecularity) nature of the former process under these conditions. A reasonable pathway for this conversion is depicted in eq (5). It seems that a better activation of the

dihaptocoordinated alkenesulfinate by the iron toward nucleophilic attack and a stronger metal- η^2 alkenesulfinate bond in 3a compared to 3b-d both favor ring closure (eq 5) over apparent insertion via dissociation (eq 3) for the zwitterion in point.

Finally it should be noted that the formation of 8a upon removal of the solvent from a solution of 3a in liquid SO_2 accords well with the above behavior. Evaporation of the $SO₂$ leads to high concentrations of 3a and therefore promotes cycloaddition at the expense of the insertion through dissociation.

Reaction of η^5 -C₅H₅Mo(CO)₃CH₂CH=CH₂ with *Sulfur Dioxide*

The reaction of the molybdenum-2-alkenyl complex 10 with neat SO_2 shows many similarities to that of its iron counterpart 2a. However it was not investigated in as much detail as the latter.

The infrared spectrum of a freshly prepared solution of 10 in liquid SO_2 at *ca*. -60 °C shows ν (C \equiv O) absorptions at 2115 m, 2063 vs, 2018 s, 1988 sh, and 1968 m cm⁻¹. Those at 2115, 2063, and 2018 cm⁻¹ are assigned to the zwitterion **11** on the basis of a structurally similar η^2 -alkene complex, $[\eta^5$ -C₅H₅Mo- $\text{CO}_3(n^2\text{-CH}_2)$ =CHCH₃)] ⁺PF₆, absorbing at 2110 vs, 062 vs, and 2008 vs cm^{-1} [30]. The absorptions at 2063, 1988, and 1968 cm^{-1} belong to the S-sulfinato product 12 as verified by an independent measurement on isolated 12. There was no evidence of any $\nu(C\equiv 0)$ bands of unreacted 10. Supporting these assignments is the behavior of the five bands upon storage of the solution. Those at 2115 and 2018 cm^{-1} decrease in intensity while the two at 1988 and 1968 cm⁻¹ become more intense. The absorption at 2063 cm^{-1} , which is very strong as a result of the overlap of the bands of **11** and 12, gains intensity slightly. No other bands were discernible which could be assigned to 13 or its dimer (or polymer). After several hours only the absorptions of 12 were evident. Although the relative intensities of the $\nu(C=0)$ bands were not monitored as closely as those of the iron complexes, it was apparent that the rearrangement of **11** to 12 is faster than that of 3a to 4a. The faster reaction of the molybdenum complex may be a result of steric acceleration of dissociation of the metal- n^2 alkenesulfinate bond in the more bulky 11 relative to 3a.

In the ¹H NMR spectrum of 10 in the τ 3.7–5.5 region, recorded at -30 to -10 °C, singlet resonances of η^5 -C₅H₅ are initially noted at τ 4.01, 4.18, 4.38, and 4.44. The resonance at τ 4.01 decreases in intensity with time and is assigned to **ll*;** the other

signals become more intense and correspond τ 4.18 to 12 and τ 4.38 and 4.44 most probably to 13 and its aggregate. Again there was no evidence of unreacted 10. A representative spectrum, obtained after $ca. 40$ min, is provided in Fig. 3. It is noteworthy that the observed rearrangement of 11 is faster than that of 3a and affords a higher ratio of the S-sulfinate to the cycloadduct than does 3a.

Figure 3. ¹H NMR spectrum in the η^5 -C₅H₅ resonance region of a solution of 10 in liquid SO_2 aged for ca . 40 min at -30 to -10 °C. The chemical shifts are in τ .

Rapid removal of the solvent from a freshly prepared solution of 10 in liquid $SO₂$ affords a yellow-brown solid after crystallization of the residue from $CHCl₃/pentane$. This solid, apparently a mixture of 13 and its dimer or trimer (or of two differently aggregated species) from the 'H NMR spectrum (two η^5 -C₅H₅ resonances), displays a lower stability than its iron counterpart(s), δa and/or $9a$, and could not be satisfactorily analyzed. However its infrared ν (C \equiv O) absorptions fall in the range expected for a structure containing a Mo-C σ bond [6, 10], and its infrared $\nu(SO_2)$ absorptions and ¹H NMR resonances, given in the Experimental section, match closely the corresponding data for 8a and 9a. Instability precluded chemical studies on the constitution of the isolated solid, including the extent of and propensity toward aggregation.

Reaction of n^5 *-C₅H₅Fe(CO)₂CH₂C=CCH₃ with Sulfur Dioxide*

The reaction of transition metal-2alkynyl complexes with $SO₂$ is thought also to proceed via a zwitterionic intermediate $[1, 3]$. In an attempt possibly to detect such a species freshly prepared solutions of η^5 -C_sH_sFe(CO)₂CH₂C=CCH₃ in liquid SO₂ at *ca.* -60 °C were examined by infrared and ¹H NMR spectroscopy. However, spectra recorded a few minutes after preparation of these solutions showed the $\nu(C=0)$ absorptions and the η^5 -C_sH_s resonance

^{*}By analogy with the corresponding resonance of $\lceil \eta^5 - \frac{1}{2} \rceil$ $C_5H_5M_0(CO)_{3}(\eta^2-CH_2=CHCH_3)]$ ⁺PF₆ (ref. 30).

only of the cycloaddition product, η^5 -C₅H₅Fe(CO)₂ - $C=CCH_3$)S(O)OCH₂.*

The apparently rapid rearrangement of the zwitterion derived from this iron-2-alkenyl complex may be ascribed to its favorable, more rigid geometry for ring closure and to a strong activation by the positively charged iron of the *dihapto*coordinated allenesulfinate toward nucleophilic attack. In this context it is of interest to note that η^2 -allene complexes of the type $\lceil \eta^5$ -C₅H₅Fe(CO)₂(η^2 -allene)] ⁺BF₄ exhibit much higher stability than the corresponding η^2 -alkene complexes [21]. Presumably this will be reflected in a stronger activation of the *dihaptocoordinated* allene than alkene.

Conclusion

This study has shown conclusively that iron-2 alkenyl complexes of the type η^5 -C₅H₅Fe(CO)₂CH₂ - $C(R)$ =CR'R["] react with SO₂ via the intermediacy of an iron- η^2 -alkenesulfinate zwitterion. The observation that η^5 -C_SH_sMo(CO)₃CH₂CH=CH₂ reacts strictly analogously to η^5 -C_sH_sFe(CO)₂CH₂CH=CH₂ points to the generality of this mechanism for the reaction of transition metal-2-alkenyl carbonyl complexes with SO_2 . Since protonation [19,30] and alkylation [4] of the same complexes proceed also by attack at the C=C bond, this mode of interaction with transition metal 2-alkenyls appears to be general of electrophilic reagents.

It has been also demonstrated that the dual behavior of the generated zwitterion, cycloaddition vs. insertion, can be rationalized for the $SO₂$ electrophile in terms of the predicted lability of the metal- η^2 -alkenesulfinate bond. Those zwitterions that are thought to be more labile react by insertion via dissociation, whereas those expected to be more inert react by cycloaddition. However, other factors, including concentration of the rearranging zwitterion, also exert an important influence on the mechanism of these reactions.

Experimental

General Procedures

All reactions except those involving sulfur dioxide were carried out in an atmosphere of nitrogen, which was also used routinely in handling organometallic compounds. Florisil(60-100 mesh), from Fisher, and Ventron alumina, deactivated with distilled H_2O (6– 10%), were employed in chromatographic separations and purifications. Melting points were measured in *vacua* on a Thomas-Hoover capillary melting point apparatus and are uncorrected. Elemental analyses were performed by Galbraith Laboratories, Inc., Knoxville, Tenn., and by Schwarzkopf Microanalytical Laboratory, Woodside, N.Y.

Materials

Anhydrous grade $SO₂$, from Matheson, was passed through concentrated H_2SO_4 and a column packed with $CaCl₂$ and $P₄O₁₀$ before condensation. All other solvents and chemicals were reagent grade or equivalent quality and were used as received.

The complexes η^5 -C₅H₅Fe(CO)₂CH₂C(R)=CR'R" $(2a: R = R' = R'' = H [19]; 2b: R = R' = H, R'' =$ CH_3 [19]; 2c: R = H, R' = R'' = CH₃ [18]; 2d: R = CH_3 , R' = R'' = H [6]), $\eta^3 \text{-} C_5H_5Mo(CO)_3CH_2CH_3$ CH₂ (10) [30], and η^5 -C₅H₅Fe(CO)₂CH₂C=CCH₃ [16] were synthesized according to published methods. The corresponding S-sulfinates η^5 -C₅H₅Fe- $\rm CO_2S(O)_2C_3H_2RR'R''$ [18] (4a: R = R' = R'' = H; $4b: R = R' = H \cdot R'' = CH_3$; 4c: R = H, R' = R'' = CH_3 ; 4d: R = CH₃, R' = R'' = H) and η^5 -C₅H₅Fe- $(CO)₂C=C(CH₃)S(O)OCH₂$ [16] were prepared and isolated as described in the appropriate references.

*Measurements on Solutions of Metal-2-Alkenyl Complexes in Liquid SO*₂

Infrared

Freshly chromatographed metal-2-alkenyl or related complexes $(\sim]30$ mg) were dissolved in approximately 15 ml of liquid SO_2 and the resulting solutions were examined by infrared (ir) spectroscopy in the $\nu(C=0)$ region on a Beckman Model IR-9 spectrophotometer. Aliquots $(\sim 3 \text{ ml})$ of these solutions were injected by means of a syringe cooled with Dry Ice into a VLT-2 variable low-temperature cell unit manufactured by Research and Industrial Instruments Co., London, England (available in the U.S. from Beckman Instruments Co., Fullerton, Calif.). This unit incorporated a 0.5-mm AgCl sample cell. Suitable adaptations in the cell unit were made for work with liquid $SO₂$; these adaptations and details of the procedure have been already published [31] . Temperature of the cell was maintained constant to within $\pm 1^\circ$.

'HNMR

Using standard vacuum-line techniques sulfur dioxide was condensed (\sim) ml) into an NMR tube containing freshly chromatographed metal-2-alkenyl or related complex (\sim 50–60 mg) and tetramethylilane (TMS) at -78 °C. The tube was then sealed under vacuum at -196 °C. Measurements were made on a Varian Associates A-60A spectrometer equipped with low-temperature accessories. Temperature was controlled to within $\pm 7^\circ$.

^{*}The observed values match closely those reported in ref. 16.

Reactions of Freshly Prepared Solutions of qs-C5H5 - $Fe(CO)_2CH_2CH=CH_2$ (2a) in Liquid SO_2 *With KI*

Sulfur dioxide was condensed (25 ml) into a lOOml round-bottom flask containing freshly chromatographed 2a $(0.45 \text{ g}, 2.1 \text{ mmol})$ at -78 °C. The flask was then charged with KI $(21.0 g, 126 mmol)$ and after 15 min allowed to warm to -10 °C. The contents were stirred for 2 hr, the SO_2 was allowed to evaporate, and the residue was extracted with CHCls (250 ml). The extracts were filtered, and the filtrate was evaporated to a brown oil on a rotary evaporator. Chromatography of the oil on alumina (10% H_2O) eluting with CHCl₃ afforded two bands which contained, respectively, η^5 -C₅H₅Fe(CO)₂I [32] (0.40 g, 70%) and η^5 -C₅H₅Fe(CO)₂S(O)₂CH₂- $CH=CH₂$ (4a) (0.06 g, 10%) characterized by ir spectroscopy.

HCl folio wed by NHJ'F6

Gaseous HCl was passed for 30-60 sec into a freshly prepared solution of chromatographically pure $2a$ (1.0 g, 4.6 mmol) in liquid SO₂ (30 ml) at -78 °C. The solution changed color from yellow to greenish brown. It was then treated with 0.57 g (3.5 mmol) of NH_4PF_6 with shaking and the SO_2 was allowed to evaporate by removal of the cold bath. The yellow residue was washed first with $CH₂Cl₂$ and then with 10:1 CHCl₃/acetone. The washings were evaporated to dryness to yield a trace amount of red solid characterized by its ir $\nu(C\equiv O)$ absorptions at 2052 vs and 2001 vs cm⁻¹ (CH₂Cl₂ solution) as η^5 - $C_5H_5Fe(CO)_2Cl$ [32].

The yellow solid was treated with liquid SO_2 at -78 °C and the insoluble material was removed by filtration. The solvent was allowed to evaporate from the filtrate by removal of the cold bath. The yellow crystalline solid (0.5 g, 40%) obtained in this manner showed ir ν (C=O) bands (Nujol mull) at 2080 vs and 2045 vs cm⁻¹ (lit. [19] for $[\eta^5 \text{-} C_5 H_5 Fe(CO)_2$ n^2 -CH₂=CHCH₂)]⁺PE₇ 2082 vs, 2053 vs cm⁻¹ uiol mult). $\Delta_{\mathbf{M}}$ (1.2 \times 10⁻³ *M* solution in nitrobenzene) 29.0 ohm^{-1} cm². ¹H NMR (acetone-d₆) τ 4.21 s (5H, C_5H_5), 4.79 c (1H, =CH-), 5.98 d (J = 17 Hz) and 6.36 d (J = 8 Hz) (2H, =CH₂), 8.10 d (J = 6 Hz, $3H$, CH_3).

Anal. Calcd for $C_{10}H_{11}F_6FeO_2P$: C, 33.0; H, 3.02. Found: C, 32.68; H, 3.44%.

With CH₃SO₃F followed by NH₄PF₆

Sulfur dioxide was condensed $(\sim 5 \text{ ml})$ into a 100ml round-bottom flask containing freshly chromatographed 2a $(0.83 \text{ g}, 3.8 \text{ mmol})$ at -78 °C. The resulting solution was treated first with $CH₃SO₃F$ $(0.57 \text{ g}, 5.1 \text{ mmol})$ and then with NH_4PF_6 (6.52 g, 40 mmol) in 20 ml of anhydrous methanol. The precipitated yellow solid was filtered off and recrystallized from 1:1 acetone/pentane $(1.1 g, 79\%$ yield). Its ir and 'H NMR spectra were identical with those of the $[\eta^5$ -C₅H₅Fe(CO)₂(η^2 -CH₂=CHCH₃)]⁺PF₆ prepared by the preceding reaction.

With $(CH_3)_3OBF_4$ *. Preparation of* $\lceil \eta^5 - C_5H_5Fe \rceil$ $(CO)_{2}(\eta^{2}-CH_{2}=CHCH_{2}S(O)_{2}CH_{3})$ ⁺X⁻ where X = *BF,* (6a) *and PF,* (6a')

Sulfur dioxide was condensed $(\sim 5 \text{ ml})$ into a flask containing freshly chromatographed 2a (1.0 g, 4.6 mmol) at -78 °C, and to the resulting solution was added with stirring $(CH₃)₃OBF₄$ (0.85 g, 6.0 mmol). Stirring was continued for 10 min as the flask was removed from the cold bath, the $SO₂$ was evaporated in a stream of nitrogen, and $CH₂Cl₂$ (10 ml) was added to the residue. The insoluble yellow solid, 6a, was filtered off and washed first with three 10-ml portions of methanol and then with two 10-ml portions of CH_2Cl_2 , mp 137–139 °C (dec). The yield was 1.2 g (70%). Ir (Nujol mull) ν (C \equiv O) 2072 vs, 2041 vs cm⁻¹, $v(SO_2)$ 1302 s, 1139 s cm⁻¹. Λ_M (~5) \times 10⁻⁴ *M* solution in acetone) 111 ohm⁻¹ cm². *Anal.* Calcd for $C_{11}H_{13}BF_4FeO_4S$: C, 34.42; H,

3.41; S, 8.34. Found: C, 34.17; H, 3.31; S, 8.22%.

The salt 6a was added to a methanol solution of a large excess (\sim 10 fold) of NH₄PF₆. The resulting suspension was stirred for 5 hr, filtered, and the α llected yellow solid, $6a'$, was washed with H₂O, ethanol, and ether, mp $140-145$ °C (dec). Ir (Nujol mull) $\nu(SO_2)$ 1307 s, 1138 s cm⁻¹, $\nu(PF_6)$ 870 m, 830 vs, br cm⁻¹. ¹H NMR (acetone-d₆) τ 4.00 s (5H, C_5H_5), 6.95 s (3H, CH_3), other signals poorly resolved because of decomposition.

With $(C_6H_5)_3CCI$ followed by NH₄PF₆. Prepara*tion of* $[\eta^5$ -C₅H₅Fe(CO)₂(η^2 -CH₂=CHCH₂S(O)₂- $C(C_6H_5)_3$ ⁺PF₆ (7a)

Sulfur dioxide was condensed $(\sim)5$ ml) into a flask containing freshly chromatographed 2a (1.0 g, 4.6 mmol) at -78 °C, and to the resulting solution was added with stirring $(C_6H_5)_3CCl$ (1.4 g, 5.0 mmol) dissolved in 20 ml of $CH₂Cl₂$. The flask was removed from the cold bath and stirring was continued for a few minutes as a pale yellow precipitate appeared. The volume of the mixture was reduced in a stream of nitrogen and the precipitate was filtered off and washed with three 5-ml portions of $CH₂Cl₂$. The yield of $[\eta^5$ -C₅H₅Fe(CO)₂(η^2 -CH₂=CHCH₂S(O)₂C(C₆- H_5)₃]⁺Cl⁻, mp 53-55 °C (dec), was 1.8 g (73%).

The above salt (0.5 g, 0.9 mmol) was added with stirring to a methanol solution (15 ml) of NH_4PF_6 (1.5 g, 9.2 mmol). After 2 min the yellow solid was filtered off and washed first with three lo-ml portions of methanol and then with three 10-ml portions of CH_2Cl_2 . The yield of 7a, mp 153-155 °C (dec), was 0.37 g (62%). Ir (Nujol mull) ν (C=O) 2081 $\frac{1}{2039}$ vs. cm⁻¹, v(SO₂) 1296 s, 1127 s cm⁻¹, PF) 870 m, 830 vs, br cm⁻¹, ¹H NMR (acetone-d,) τ 4.10 s (5H, C_sH_s), other signals, besides that of

 $L₆$ H_s, not readily assigned because of a high noise evel. A_M $(\sim 5 \times 10^{-4} M)$ solution in acetone) 134 ohm^{-1} cm².

Anal. Calcd for $C_{29}H_{25}F_6FeO_4PS$: C, 51.96; H, 3.76; S, 4.77. Found: C, 51.80; H, 3.76; S, 4.57%.

Preparation of $[\eta^5$ -C₅H₅Fe(CO)₂(C₃H₅SO₂)]_x (8a *and* 9a)

The following procedure was found to yield the title compound as a monomer $(x = 1, 8a)$ of relatively high purity.

Onto *ca.* 2 g of freshly chromatographed 2a at -20 to -10 °C sulfur dioxide was condensed (~2 ml) and then immediately removed from the resulting solution by pumping at -10 to 0 °C for *ca*. 10 min. The yellow residue melted at $62-65$ °C. Ir (KBr) pellet) $v(C=0)$ 2064 w, 2012 vs, 2008 w, 1957 vs the weak absorptions are those of the contaminant cm^{-1} , $\nu(SO_2)$ 1302 s, 1174 w, 1109 s, 1037 w cm⁻¹ 4a, \sim 5%). ¹H NMR (CDCl₃) τ 4.78 s (\sim 0.1 H, C₅H₅ of 4a), 5.03 s (5H, C_5H_5), 5.08 s (variable but low intensity, C_5H_5 of $x = 2$ and/or 3 title complex, 9a), 6.5 c (4H, 2CH₂), 7.8 c (\sim 1H, CH). Calcd mol. wt. for $C_{10}H_{10}FeO_4S$: 282. Found (CHCl₃, osmometric): 285-288 (the compound was carefully degassed by pumping *in vacua* and weighed in a dry box for these measurements). Mass spectrum (60 $^{\circ}$ C), no ions above m/e 220.

When 8a was dissolved in minimum 2:1 $CH₂Cl₂$ / hexane and the resulting solution was stored at $25^{\circ}C$, yellow needles of $9a$ ($x = 2$ and/or 3) separated gradually and were filtered off, mp $150-160$ °C (dec). $I(\text{CHCl}_2)$ $\nu(\text{C}=0)$ 2020 vs, 1961 vs cm⁻¹, (KBr) ellet) $\nu(C\equiv 0)$ 2010 vs, 1957 vs cm⁻¹, $\nu(SO_2)$ 1324 s, 1298 s, 1126 s, 1109 s cm⁻¹. ¹H NMR (CDCl₃) τ 5.08 $(5H, C₅H₅), 6.5$ c (4H), 7.8 c (~1H). Calcd mol. wt. for $(C_{10}H_{10}FeO_4S)_2$: 564; for $(C_{10}H_{10}FeO_4S)_3$: 846. Found (CHCl,, osmometric): 571-577, 604-660 (two different preparations). Mass spectrum (100 \degree C, intensity of peak at m/e 121 $(C_5H_5Fe^+) = 100$ includes peaks at m/e 266 $(C_5H_5Fe(CO)_2C_3H_5SO^*$, intensity 4.9), 190.018464 (exact mass) $(C_5H_5Fe-$ (CO) $C_3H_5^*$ 190.0080601, but $C_5H_5Fe(CO)_2CH^*$ 189.9716758, intensity 11.7), 162 $(C_5H_5Fe(CO))$ -CH⁺ and/or $C_5H_5FeC_3H_5$, intensity 30.2), 133.98386 $(exact mass) (C₅H₅FeCH⁺ 133.9818476, intensity)$ 10.8), 64 $(SO₂⁺$, intensity 56); no peaks at m/e 282, 564 corresponding to $[C_5H_5Fe(CO)_2(C_3H_5SO_2)]_{1,2}^+$.

Anal. Calcd for C₁₀H₁₀FeO₄S: C, 42.58; H, 3.57; O, 22.69. Calcd for $C_{10}H_{10}FeO_5S$: O, 26.85. Found: C, 42.33,42.41; H, 3.63,3.76; 0,22.65%.

Complex 9a was obtained also by condensing sulfur dioxide onto 2a at temperatures ranging from -78 to -10 °C or by passing gaseous SO₂ through a solution of 2a in pentane at $ca. -75$ °C. Removal of the $SO₂$ (and pentane) after varying reaction times and chromatography of the residue on Florisil first eluted 9a with $CH₂Cl₂$ or CHCl₃ and then 4a with $5:1$ CHCl₃/acetone.

Reaction of $[\eta^5$ -C₅H₅Fe(CO)₂(C₃H₅SO₂)]_x (8a and 9a) *with HCl*

Gaseous HCl was passed slowly through a freshly prepared solution of 8a $(\sim 0.2 \text{ g})$ in pentane (25 ml) at 25 "C. Immediately the solution changed color from yellow-brown to red. After 2 hr solvent was removed on a rotary evaporator to leave a red-brown oil. The ir spectrum of this oil (neat) showed absorptions at 2052 vs and 2001 vs cm⁻¹ (ν (C=O), η ⁵-C_sH_s-Fe(CO)₂Cl) and at 1318 m and 1114 m cm^{-1} $(\nu(SO_2))$, organic sulfone). Chromatography on Florisil eluting with benzene afforded pure η^5 -C_sH_s- $Fe(CO)₂Cl$, but the unknown organic sulfone could not be completely separated from a small amount of η^5 -C_sH_sFe(CO)₂Cl.

A similar result was obtained when solid 8a was treated with gaseous HCl for 30 min.

Gaseous HCl was passed slowly into a solution of **9a** (0.25 g) in THF, CH₃CN, CHCl₃ or CH₂Cl₂ (30 ml) for 15-60 min. The yellow solution gradually turned red. Solvent was then removed on a rotary evaporator to leave a red-brown oil that showed (neat) ir ν (C \equiv O) bands at 2057 vs, 2001 vs cm⁻¹ (n^5 - $C_5H_5Fe(CO)_2Cl$, 2023 m, and 1962 m cm⁻¹ (9a), and $v(SO₂)$ bands at 1316 m, 1120 m (organic sulfone), 1298 w, and 1110 w cm⁻¹ (9a). Chromatography of this oil on alumina $(10\% \text{ H}_2\text{O})$ afforded η^5 -C₅H₅Fe(CO)₂Cl as the only pure product.

Preparation of $[\eta^5$ -C₅H₅Mo(CO)₃(C₃H₅SO₂)]_x (13 *and/or its aggregate)*

Onto *ca*. 1 g of freshly chromatographed n^5 - $C_5H_5Mo(CO)_3CH_2CH=CH_2$ (10) at -10 °C sulfur dioxide was condensed $(2-3$ ml) and then rapidly removed from the resulting solution in a stream of nitrogen. The residue was degassed by pumping *in vacuo* at 25 °C and dissolved in 4 ml of CHCl₃. Addition of pentane yielded a yellow-brown precipitate (0.2 g) , dec *ca.* 105 °C. Ir (KBr pellet) $\nu(C=0)$ 2057 w, 2021 vs, 1959 vs, sh, 1918 vs, br cm⁻¹, $\nu(SO_2)$ 1298 s, 1107 s cm⁻¹ (the weak absorption is that of η^5 -C₅H₅Mo(CO)₃S(O)₂CH₂CH= CH₂, 12). ¹H NMR (SO₂) τ 4.38 s, 4.44 s (variable intensity, both signals 5 H), 6.56 c (4 H), 7.65 c (1 H).

Physical Measurements

Ir spectra were recorded on a Beckman Model IR-9 spectrophotometer whenever high precision and/or resolution was required. Other ir spectra were taken on a Perkin-Elmer Model 337 spectrophotometer. Room-temperature 'H NMR spectra were recorded on Varian Associates A-60 and A-60A spectrometers using TMS as a reference. Mass spectral measurements were made at 70 eV on an A.E.I. Model MS-9 spectrometer by Mr. C. R. Weisenberger. Molar conductivities (Λ_M) were determined in various solvents using an Industrial Instruments, Inc., Model RC 16B2 conductivity bridge in conjunction with a cell with platinum electrodes. Molecular weights were obtained on a Mechrolab Model 301-A vapor pressure osmometer using ca. 10^{-2} *M* solutions.

Acknowledgements

Financial support of this research by the National Science Foundation and a Fellowship to A. W. by the Guggenheim Foundation are gratefully acknowledged.

References

- A. Wojcicki, *Ann. N. Y. Acad. Sci., 239,* 100 (1974).
- 2 J. P. Williams and A. Wojcicki, *Inorg. Chem., 16*, 2506 (1977).
- M. Rosenblum, *Act. Chem. Res., 7, 122* (1974).
- A. Cutler, D. Ehntholt, P. Lennon, K. Nicholas, D. F. Marten, M. Madhavarao, S. Raghu, A. Rosan and M. Rosenblum,J. *Am. Chem. Sot., 97,* 3149 (1975).
- *5* A. Cutler, D. Ehntholt, W. P. Giering, P. Lennon, S. Raghu, A. Rosan, M. Rosenblum, J. Tancrede and D. We&J. *Am. Chem. Sot., 98, 3495* (1976).
- S. R. Su and A. Wojcicki, *Znorg. Chim. Acta, 8, 55* (1974).
- W. P. Giering and M. Rosenblum, J. *Am. Chem. Sot., 93, 5299* (1971).
- 8 Y. Yamamoto and A. Wojcicki, *Inorg. Chem., 12*, 1779 (1973).
- W. P. Giering, S. Raghu, M. Rosenblum, A. Cutler, D. Ehntholt and R. W. Fish, J. *Am. Chem. Sot., 94, 8251* (1972).
- 0 D. W. Lichtenberg and A. Wojcicki, *Inorg. Chem., 14*, 1295 (1975).
- 11 F. A. Hartman, P. J. Pollick, R. L. Downs and A. Wojcicki, J. *Am. Chem. Sot., 89, 2493* (1967).
- 2 F. A. Hartman and A. Wojcicki, *Inorg. Chim. Acta. 2, 289 (1968).*
- 13 *C.* J. Cooksey, D. Dodd, C. Gatford, M. D. Johnson, G. J. Lewis and D. M. Titchmarsh, J. Chem. Soc. Perkin Trans. *[Z, 655 (1972).*
- 14 *C.* V. Magatti and W. P. Giering, *J. Organomet. Chem., 73, 85* (1974).
- 15 J. P. Williams and A. Wojcicki, Znorg. *Chem., 16, 3116* (1977).
- 16 J. E. Thomasson, P. W. Robinson, D. A. Ross and A. Wojcicki, *Znorg. Chem., IO, 2130* (1971).
- 17 L. S. Chen, S. R. Su and A. Wojcicki, Z. *Am. Chem. Sot., 96, 5655* (1974).
- 8 R. L. Downs and A. Wojcicki, *Inorg. Chim. Acta*, following paper.
- 9 M. L. H. Green and P. L. I. Nagy, *J. Chem. Soc.,* 189 (1963).
- 20 D. W. Lichtenberg and A. Wojcicki, J. *Organomet,* Chem., 94, 311 (1975).
- 21 B. Foxman, D. Marten, A. Rosan, S. Raghu and M. Rosenblum, *J. Am. Chem. Sot., 99, 2160* (1977).
- 22 L. M. Haines and M. H. B. Stiddard, *Adv. Znorg. Chem. Radiochem., I2, 53* (1969).
- 3 M. Herberhold, "Metal π -Complexes", Vol. II, Elsevier, New York, N.Y. (1974) pp. 130-134.
- 4 S. E. Jacobson, P. Reich-Rohrwig and A. Woicicki, *Inorg. Chem., 12, 717* (1973).
- 25 P. J. Elving and J. M. Markowitz,.Z. *Chem. Educ., 37, 75 (1960).*
- 26 W. P. Giering, M. Rosenblum and J. Tancrede, *J. Am. Chem. Sot., 94, 7170* (1972).
- 7 M. B. Reynolds and C. A. Kraus, *J. Am. Chem. Soc., 70.* 1709 (1948).
- 28 L. J. Bellamy, "The Infrared Spectra of Complex Molecules", 2nd Ed., Wiley, New York, N.Y. (1960) pp. 360-363.
- 29 P. Biscarini, F. Taddei and C. Zauli, *Boll. Sci. Fat. Chim. Znd. Bologna, 21,* 169 (1963).
- 30 M. Cousins and M. L. H. Green, *J. Chem. Sot., 889* (1963).
- 31 *S.* E. Jacobson and A. Wojcicki, *J. Am. Chem. Sot., 95, 6962* (1973).
- 2 T. E. Sloan and A. Woicicki, *Inorg. Chem., 7.* 1268 (1968).