Metal Complexes of 2-Acetylpyridine N-Oxide Oxime

A. E. LANDERS and D. J. PHILLIPS*

School of Chemistry, The University of New South Wales, Kensington, N.S. W. 2033, Australia Received August 7, 1981

Complexes of 2-acetylpyridine N-oxide oxime (pxo) are reported with Ni(H), Co(II), Cu(H) and Fe(IH). Pxo behaves as an 0,N donor via *the Noxide oxygen and the oxime nitrogen atoms. The complexes* $M(pxo)Cl_2 \cdot CH_3OH$ *(M = Ni, Co) are antiferromagnetic and are thought to be N-oxide-*

*Author to whom correspondence should be addressed.

bridged. The temperature dependence of the magnetism of the nickel compound has been compared to that for various models. Complexes of the type $M(pxo)_2X_2$ ($M = Ni$, Co, Cu) have been obtained, in which X is drawn from Br, $NO₃$, $BF₄$ and NCS, *depending on the metal; these compounds are all* assigned trans-MN₂O₂X₂ structures. Halogen-bridged *structures are proposed for the complexes Cu(pxo)- Hal₂* (*Hal = Cl, Br*). The compound $Fe(pxo)Cl₃$ ^{*}

TABLE I. Analytical Data.

^aThese complexes were prepared as for $Ni(pxo)_2Br_2$, shown in the experimental section. The remaining complexes were obtained using the procedure given for $Cu(pxo)_2(NO_3)_2$.

838~s 843s 847~s 851~s

TABLE II. Ligand Infrared Spectra (cm⁻¹).

^aThe oxime $\nu(NO)$ band near 1050 cm⁻¹ is obscured by tetrafluoroborate absorption.

 $Co(pxo)_2Br_2$ 1213vs 1042m, 1021vs, 961vs Co(pxo)₂(NO₃)₂ 1202s 1043s, 1022m, 969m $Co(pxo)₂(NCS)₂$ 1203^{vs} 1034s, 1022s, 962s $Fe(pxo)Cl₃·CH₃OH$ 1212vs, 1205vs 1042vs, 1018s, 972s

CH3 OH is probably six-coordinate. Magnetic measurements and electronic spectra, to liquid nitrogen temperature, are reported and also infrared spectra, X-ray powder diffraction spectra and Mhsbauer spectra.

Introduction

Complexes of pyridine N-oxide and its substituted derivatives have been extensively studied. Many examples of N-oxide-bridged, antiferromagnetic complexes have been reported with copper (II) , but very few complexes of this type have been obtained with other transition metal ions [1]. We have been investigating ligands based on pyridine N-oxides, with donor substituents in the 2-position, to see whether antiferromagnetic complexes, with a wider range of transition metals, may be obtained $[2-4]$. We report complexes of 2-acetylpyridine N-oxide oxime (I, pxo). Antiferromagnetic interaction is found for a nickel(U) and a cobalt(I1) complex with this ligand.

Part of this work was described in a preliminary communication [2].

TABLE III. Magnetic Data.

^aCurie-Weiss law is taken as $x_A^{-1} \propto (T - \theta)$. ^bDeviated from linearity at lower temperatures.

Results and Discussion

Metal complexes are listed in Table I, with analytical data. Mono- or bis-ligand complexes were obtained by reactions in methanol. No tris-ligand, or deprotonated, complexes could be obtained.

Infrared spectra are given in Table II. The spectrum of pxo resembles that of 2-acetylpyridine oxime, with additional infrared bands which we

TABLE IV. Diffuse Reflectance Spectra.

Compound	Temperature (K) 298		Absorption maxima (cm ⁻¹ \times 10 ⁻³)		
$Ni(pxo)Cl2 \cdot CH3OH$		6.0sh,	8.6;	14.6;	$\mathbf a$
	83	6.6, 8.0,	9.4;	14.9;	a
Ni(pxo) ₂ Br ₂	298	7.7,	9.1;	14.9;	a
	83	7.6,	9.5;	15.5	a
$Ni(pxo)2(NO3)2·H2O$	298	9.2sh,	11.4;	17.5;	a
	83	8.9,	11.8;	17.8	a
Ni(pxo) ₂ (NCS) ₂	298		10.4	16.9;	a
	83	8.8,	11.0;	17.5;	a
$Co(pxo)Cl2 \cdot CH3OH$	298	6.0,	7.7;	14.7sh,	17.8
	83	6.0,	8.1;		18.0
Co(pxo) ₂ Br ₂	298	7.7,		17.8	
	83	7.8,	9.5sh;	18.1	
$Co(pxo)2(NO3)2$	298		10.8;	a	
	83	9.2sh,	11.2;	$\bf a$	
Co(pxo) ₂ (NCS) ₂	298		9.3;	16.0sh,	19.4
	83	7.2sh,	10.0;	16.0sh,	19.8sh
Cu(pxo)Cl ₂	298	11.0sh,	13.6		
Cu(pxo)Br ₂	298	11.0sh,	13.8		
$Cu(pxo)2(NO3)2$	298	13.0sh,	17.1		
$Cu(pxo)2(BF4)2$	298	14.8sh,	18.5		
$Fe(pxo)Cl_3 \cdot CH_3OH$	298	8.9,	9.9		

^aStrong ligand/charge transfer absorption obscures any d-d bands in the 20,000 cm⁻¹ region.

assign to pyridyl N-oxide modes. The N-oxide $\nu(NO)$ absorption in pxo is a doublet, at 1218, 1211 cm^{-1} . and the $\delta(NO)$ band occurs at 837 cm⁻¹. The N-oxide $\nu(NO)$ mode decreases, upon coordination, by an average of ca. 8 cm⁻¹ and $\delta(NO)$ increases by ca. 9 cm⁻¹. This indicates N-oxide coordination by pxo [1].

With other oxime ligands, the oxime $\delta(NO)$ mode has been assigned to a band, or series of bands, in the region $1200 - 950$ cm⁻¹ [5-7]. The neutral oxime group always appears to be an N-donor in metal complexes and this causes the oxime $\nu(NO)$ band to shift to higher frequency. In 2-pyridinecarboxaldehyde oxime (II, Hpox), $\nu(NO)$ occurs at 980 cm⁻¹, and increases by ca. 50-90 cm⁻¹ upon coordination $[5-7]$. We have compared the infrared spectra of pxo, 2-acetylpyridine N-oxide, and pyridine N-oxide, in order to detect oxime absorptions in pxo. We assign bands at 1012 and 928 cm⁻¹ to the oxime $\nu(\overline{NO})$ mode in pxo. Both bands rise in frequency on coordination. The 928 cm⁻¹ band occurs in complexes at ca . 970 cm⁻¹ and the 1012 cm^{-1} band is replaced by one to three bands in the range $1047-1010$ cm⁻¹, suggesting N-coordination by the oxime group. The oxime $\nu(CN)$ mode in pxo is assigned to a band at 1637 cm⁻¹, similar to $\nu(\text{CN})$

in other oxime systems $[6, 7]$, but this mode could not be detected in any pxo complexes. In conclusion, therefore, infrared data show that pxo behaves as an O, N ligand, coordinating via the N-oxide oxygen and the oxime nitrogen.

Magnetic data, over a temperature range, are given in Table III. The complexes $Ni(pxo)Cl_2 \cdot CH_3OH$ and $Co(pxo)Cl_2 \cdot CH_3OH$ are antiferromagnetic, whereas the remaining complexes are magnetically normal. Diffuse reflectance spectra are listed in Table IV, anion infrared data in Table V, and X-ray powder diffraction patterns, for isostructural complexes, are given in Table VIII.

The nickel complexes have reflectance spectra typical of tetragonally distorted six-coordinate complexes [8]. Bands are present in the 8-10,000 and 14–17,000 cm⁻¹ regions, where ν_1 ($\frac{3T_{2g} \leftarrow 3A_{2g}}{T_{1g} \leftarrow 3A_{2g}}$
and ν_2 ($\frac{3T_{1g} \leftarrow 3A_{2g}}{T_{1g} \leftarrow 3A_{2g}}$) of octahedral nickel(II) usually
appear. The ν_1 band has shoulders, or resolved components, indicating a lowering of symmetry. The band splittings are more pronounced at liquid nitrogen temperature.

The complex $Ni(pxo)₂(NCS)₂$ has anion infrared absorptions which show that terminal N-bonded thiocyanate is present [9]. The complex, therefore, has an $NiN₄O₂$ chromophore. A trans- $N₄O₂$ structure is

TABLE V. Infrared Spectra of Anions in Complexes.

aObscured by ligand absorption.

TABLE V1. Magnetic Data for Ni(pxo)Cl₂ \cdot CH₃OH and $Co(pxo)Cl₂·CH₃OH.$

$Ni(pxo)Cl2·CH3OH$			$Co(pxo)Cl2 \cdot CH3OH$			
T(K)	10^{6} x'_M (cgsu)	$\mu_{eff}(B.M.)$	T(K)	$10^6 x_M'$ (cgsu)	$\mu_{eff}(B.M.)$	
298	3579	2.93	298	8743	4.59	
275	3799	2.90	275	9430	4.57	
255	4072	2.89	255	10048	4.55	
235	4302	2.85	235	10748	4.51	
215	4587	2.82	215	11610	4.49	
196	5004	2.81	196	12554	4.45	
176	5387	2.77	176	13672	4.41	
156	5814	2.71	156	15003	4.35	
137	6313	2.64	137	16446	4.26	
118	6833	2.57	118	18065	4.14	
108	7101	2.49	108	18995	4.07	
99	7447	2.43	99	20014	3.99	
89	7781	2.36	89	21126	3.89	

proposed in view of the distortion indicated by the electronic spectrum. Structures (III) or (IV) are possible. The latter structure is preferred, because it incorporates the *trans*-planar arrangement of pxo ligands shown in (V). This maximises hydrogen-bonding by the oxime group. Such hydrogen-bonding is a pronounced feature of oxime complexes, e.g. with glyoximes and salicylaldoximes [6]. The anion infrared bands of $Ni(pxo)₂(NO₃)₂·H₂O$ show that both nitrates are coordinated, and probably uniden-

 $(1V)$

tate $[9-11]$. This complex, and Ni $(pxo)_2Br_2$, have reflectance spectra which indicate six-coordinate trans-structures, probably of type (IV).

The mono-ligand complex $Ni(pxo)Cl₂·CH₃OH$ is antiferromagnetic, and magnetic data are given in Table (VI). The susceptibility data for $Ni(pxo)Cl₂$. CH₃OH have been compared with that predicted from various bridged models, using a least-squares procedure, and the best fits are shown in Table VII. The binuclear model gave the closest fit, although several other models gave reasonable fits. The magnetic interaction could be a result of bridging by chloride, oxime or N-oxide. Bridging chloride, in

TABLE VII. Best-Fits of Magnetic Data of $Ni(pxo)Cl₂·CH₃OH^a$

Model	(Reference) ^b	g	(cm^{-1})	$\Sigma [(\chi_{\rm obs} - \chi_{\rm calc})T]^2$	$\left[\frac{\Sigma(\chi_{\rm obs} - \chi_{\rm calc})^2}{2}\right]^{1/2}$ $\Sigma(\chi_{\rm obs})$	S.E. ^c
dimer	(12)	2.15	-19.1	0.39×10^{-3}	0.005	0.009
linear trimer	(13)	2.19	-18.2	0.93×10^{-3}	0.010	0.014
equilaterial triangle	(13)	2.20	-13.4	1.06×10^{-3}	0.011	0.015
regular tetrahedron	(14)	2.22	-10.0	1.25×10^{-3}	0.012	0.016
Heisenberg linear polymer	(15)	2.20	-13.5	0.83×10^{-3}	0.009	0.013

^aBest fits were obtained using a least-squares procedure which minimised Σ [($\chi_{obs} - \chi_{calc}$)T]². ^bReferences to the susceptiity equations are given in parentheses. The temperature independent paramagnetism was taken as 200×10^{-6} cgsu. ^cS.E. the standard error expression $\sum \mu_{eff}(\text{obs}) - \mu_{eff}(\text{calc})^2/(NP - k)^{1/2}$, where k is the number of parameters used to fit the NP data points (Ginsberg *et al., Inorg. Chem., II, 2884 (1972).*

(VI)

complexes of the type $Nil_nCl₂$, does not usually produce marked interaction [16, 17]. Bridging oxime is well known, and can produce magnetic interaction $[6, 18]$. We are, however, only aware of bridging with ionised oxime or partially ionised oxime (as in glyoxime complexes) and know of no cases of magnetic interaction produced by neutral oxime groups [6]. Bridging N-oxide is, therefore, considered most likely and a simple binuclear structure is shown in (VI). A polymeric structure could be produced by linking such units via chloride bridging.

The complex $Co(pxo)Cl_2 \cdot CH_3OH$ has a reflectance spectrum which indicates a six-coordinate structure [8]. The μ_{eff} decreased by ca. 0.7 B.M. between 298 K and 89 K, giving a Weiss theta value of -46 K. This is larger than the usual theta values for magnetically dilute six-coordinate cobalt(H) $(-10$ to -40 K) [17, 18]. Magnetic interaction is probably occurring between the cobalt(H) ions. X-ray powder diffraction patterns show that the complex is isostructural with $Ni(pxo)Cl₂·CH₃OH.$

The reflectance spectra of $Co(pxo)₂Br₂$ and $Co(pxo)_2(NCS)_2$ indicate six-coordinate cobalt(II) [8]. N-bonded thiocyanate is present in $Co(pxo)₂$. $(NCS)_2$, according to the anion infrared absorptions [9]. X-ray powder diffraction spectra show that $Co(pxo)₂Br₂$ is isostructural with $Ni(pxo)₂Br₂$. The cobalt bromide and thiocyanate complexes are assigned *trans*-structures, analogous to (IV) .

The infrared spectrum of $Co(pxo)₂(NO₃)₂$ has anion absorptions indicative of coordinated nitrate.

The X-ray powder pattern is similar to that of the nickel nitrate complex. A trans- CoN_2O_4 structure is, therefore, proposed for $Co(pxo)_2(NO_3)_2$. The reflectance spectrum of $Co(pxo)₂(NO₃)₂$ has a broad band $10,800$ cm⁻¹ and also strong absorption occurring $20,000$ cm⁻¹, in which any $d-d$ bands are robably obscured by ligand or charge-transfer absorption. The $10,800$ cm⁻¹ band is unusually high if requency for v_1 ($T_{2g} \leftarrow T_{1g}$) of octahedral coalt(II). The band is in the region for a $CoN₆$ chromophore, as in $Co(bipy)_{3}(H_{2}O)_{6}SO_{4}$ which absorbs at $11,000$ cm⁻¹ [8, 19]. The high frequency of the $10,800$ cm⁻¹ band may be associated with the lowsymmetry of the *trans*-CoN₂O₄ chromophore, although we are not aware of such a spectrum with other tetragonal $CoN₂O₄$ systems [20, 21]. Some structural distortion might also be responsible for the unusual spectrum. A large distortion would not be expected, in view of the general similarity of the X-ray powder pattern to that of the nickel nitrate complex.

The compound $Cu(pxo)_2(NO_3)_2$ has both nitrate groups coordinated, according to anion infrared absorptions [9]. X-ray powder diffraction spectra show that the complex is isostructural with the nickel and cobalt nitrate complexes. The reflectance specum $(13,100 \text{ sh}; 17,100 \text{ cm}^{-1})$ resembles that of $u(\text{fomp})_2$ py₂ \cdot H₂O (fomp is 4-formyl-2-methoxy phenolato) which has a $CuN₂O₄$ chromophore and absorbs at 12,500 and $16,400 \text{ cm}^{-1}$ [22]. The infrared spectrum of $Cu(pxo)₂(BF₄)₂$ shows that the anions are coordinated [9] . The reflectance spectrum resembles that of $Cu(pxo)₂ (NO₃)₂$, suggesting a similar structure, analogous to (IV).

The copper halide complexes, $Cu(pxo)Ha_2$ (Hal = Cl, Br), are magnetically normal N-oxide bridging, which is very common with I:1 N-oxide complexes of copper halides, is therefore unlikely [l] . The reflectance spectra have a band at ca. $14,000$ cm⁻¹. This is too low for a square planar $CuNOHal₂$ struc-

Ni(pxo)Cl ₂ · CH ₃ OH	$Co(pxo)Cl2 \cdot CH3OH$	Ni(pxo) ₂ Br ₂	$Co(pxo)$ ₂ $Br2$	
8.09s	8.12s	8.36m	8.36m	
7.59 _{vs}	7.65vs	8.15m	8.22m	
	6.76m	7.30vs	7.30vs	
6.12s	6.16s	6.36vs	6.36vs	
5.92s	5.99s	5.10m	5.09m	
4.28m	4.36m	4.82w	4.80w	
4.02m	4.11m	4.08s	4.11s	
3.72m	3.75m	3.89m	3.87m	
3.60m	3.61 _m	3.55w	3.58m	
3.52s	3.54s	3.51s	3.51s	
3.27w	3.30w	3.31w	3.31w	
3.11 _m	3.15m	3.10m	3.10 _m	
3.08 _m	3.08 _m	2.92m	2.90 _m	
2.98 _m	3.01 _m	2.88m	2.88 _m	
2.95m	2.99 _m	2.79m	2.80 _m	
$Ni(pxo)2(NO3)2·H2O$	$Co(pxo)2(NO3)2$		$Cu(pxo)2(NO3)2$)	
9.25vs	9.16vs		9.40vs	
7.22s	7.25s		7.20s	
6.64s	6.51s		6.51s	
5.69 vs	5.57 vs		5.63vs	
5.31m	5.31m		5.34m	
4.86w	5.01w		4.82w	
4.78w	4.72w		4.72w	
4.22m	4.21m		4.21m	
	3.66w		3.70w	
ca. 3.63sh	3.62w		3.65w	
	3.60w		3.60w	
3.55s	3.53s		3.54s	
3.43m	3.42 _m		3.41 _m	
3.35w	3.31w		3.28w	
3.21s	3.25s		3.22s	

TABLE VIII. Major Lines in X-Ray Powder Diffraction Spectra (d-spacings (A)).

ture. For example, the square planar $CuN₂Cl₂$ chromophore in $Cu(2-methylpyridine)$, $Cl₂$ has a band at 17.100 cm^{-1} with a shoulder at 13.900 cm^{-1} [23, 24]. However, the pxo complexes have similar spectra to $Cu(en)Cl₂$ (en = ethylenediamine), which absorbs at $14-15,000$ cm⁻¹ [25]. Halogen-bridged structures, like that of $Cu(en)Cl₂$, are proposed for the pxo complexes.

The complex $Fe(pxo)Cl_3 \cdot CH_3OH$ is likely to be five or six-coordinate, in view of the structures of iron(III) complexes with other bidentate ligands. The electronic spectrum, with weak absorption ca. $10,000$ cm⁻¹, resembles the spectra of six-rather than five-coordinate iron(III) complexes [26]. The Mössbauer spectrum has chemical shifts $(\delta \text{ values})$ of 0.57 and 0.66 mm s^{-1} at room temperature and liquid nitrogen temperatures, respectively (relative to sodium nitroprusside). No detectable quadrupole splitting is present, showing that the fields produced by pxo and chloride are not greatly different. The complex $[N(C_2H_5)_4]$ [Fe(phen)Cl₄] (phen = 1,10phenanthroline) has a six-coordinate FeN₂Cl₄ structure and has a similar spectrum, with $\delta = 0.65$ mm s^{-1} and no quadrupole splitting [27].

Experimental

2-Acetylpyridine N-oxide Oxime (pxo)

Hydroxylamine hydrochloride $(20 g)$ and sodium acetate (40 g) were dissolved in water (60 ml) by warming on a water bath. 2-Acetylpyridine N-oxide [28] (10 g) was dissolved in warm water (20 ml) , the two solutions were combined and stirred vigorously and upon allowing to cool a white solid was deposited $(7 g)$. The compound may be recrystallised from a 3:2 alcohol and water mixture.

Complexes of pxo

Complexes were prepared by reacting pxo and the metal salt dissolved in methanol/2,2-dimethoxy-

propane mixtures. The solutions were either cooled or concentrated and aiiowed to stand. Typicai examples of the preparations are given below, and the procedure which was followed is indicated for each complex in Table I.

$Cu(pxo₂)/[NO₃]$ ₂

A solution of pxo (0.80 g) in warm methanol (30 ml) was added to a warm solution of cupric nitrate trihydrate (1.80 g) in methanol (30 ml) and 2,2-dimethoxypropane (10 ml). The resulting solution was warmed for approximately 10 min and left to stand. After several hours a green powder was deposited.

$Ni(pxo)₂Br₂$

A solution of pxo (0.82 g) in warm methanol (35 ml) was added to a warm solution of nickel(H) bromide trihydrate (1 SO g) in methanol (30 ml) and 2,2dimethoxypropane (10 ml). The solution was concentrated on a water bath to approximately 25 ml and upon leaving to stand the complex crystallised out.

Analyses and Physical Measurements

These were as previously described [4] .

References

- 1 N. M. Karayannis, L. L. Pytlewski and C. M. Mikulski, *Coord. Chem. Rev., II, 93* (1973).
- *2* A. E. Landers and D. J. Phillips, *Inorg. Chim. Acta, 25,* L39 (1977).
- *3* A. E. Landers and D. J. Phillips, *Abstr. of 9th Conference of the RACI Division of Coord. and Metal-Org. Chemistry,* (Sydney, 1980) 89.
- 4 A. E. Landers and D. J. Phillips, Inorg. *Chim. Acta, 51,* 109 (1981).
- 5 R. A. Krause, N. B. Colthup and D. H. Busch, J. *Phys. Chem., 65, 2216* (1961).
-
- *6* A. Chakravorty, *Coord. Chem. Rev., 13,* 1 (1974).
7 F. Holmes, G. Lees and A. E. Underhill, J. Chem. Soc. *(A), 999* (1971).
- 8 A. B. P. Lever, 'Inorganic Electronic Spectroscopy', Elsevier, Amsterdam (1968).
- 9 K. Nakamoto, 'Infrared Spectra of Inorganic and Coordination Compounds', John Wiley, New York (1970).
- 10 N. F. Curtis and Y. M. Curtis, Inorg. *Chem., 4, 804* (1965).
- 11 C. C. Addison, N. Logan, S. C. Wallwork and C. D. Garner, *Quart. Rev. Chem. Sot., 25, 289* (1971).
- 12 A. Earnshaw, 'Introduction to Magnetochemistry', Academic Press, London (1968).
- 13 A. P. Ginsberg, R. L. Martin and R. C. Sherwood, Inorg. *Chem., 7,* 932(1968).
- 14 J. A. Bertrand, A. P. Ginsberg, R. I. Kaplan, C. E. Kirkwood, R, L. Martin and R. C. Sherwood, *Inorg. Chem.*, *10*, 240 (1971).
- 15 M. E. Fisher, Am. J. Phys., 32, 343 (1964).
- 16 Landolt-Bomstein, New Series Group II, Volume 2, 'Magnetic Properties of Coordination and Organometallic Transition Metal Compounds', by E. König, Springer, Berlin (1966).
- 17 B. N. Figgis and J. Lewis, Prog. *Inorg. Chem., 6, 37* (1964).
- 18 G. A. Nicholson, C. R. Lazarus and B. J. McCormick, *Inorg. Chem., 19,* 192 (1980).
- 19 J. Reedijk, W. L.Driessen and W. L. Groeneveld, *Rec. Trav. Chim. Pays-Bas, 88,* 1095 (1969).
- *20* J. A. Kakazai and G. A. Melson, *Inorg. Chim. Acta, 4, 360* (1970).
- 21 J. I. Bullock and R. J. Hobson, *Inorg. Chim. Acta, 19, 79 (1976).*
- *22* J. I. Bullock, R. J. Hobson and D. C. Povey, *J. Chem.*
- 23 R. J. Dudley and B. J. Hathaway, J. Chem. Soc. (A), 2799 (1970).
- 24 D. E. Billing and A. E. Underhill, *J. Inorg. Nucl. Chem., 30, 2147* (1968).
- *25* D. E. Billing, R. Dudley, B. J. Hathaway, P. Nicholls and I. M. Procter. *J.* Chem. Sot. */Al.* 312 (1969).
- 26 J. A. Bertrand and P. G. Eller, *Inorg. Chem.*, 13, 927 (1974).
- *27* R. R. Berrett, B. W. Fitzsimmons and A. A. Owusu, J. Chem. Soc. (A), 1575 (1968).
- 28 K. Winterfeld and W. Zickel, *Arch. Pharm., 302, 900* (1969).