Preparation and 31P NMR Studies of Cationic Methyl Platinum(I1) Complexes Containing Mixed Ligands

A. B. GOEL* and S. GOEL

School of Chemistry, Georgia Institute of Technology, Atlanta, Ga. 30332, U.S.A. Received September 5,198l

*The preparation of some new cationic methyl*platinum(II) complexes containing mixed ligands of general formula, $[PtMe(L)]/L'/J'PF_6$, $1/L = Ph_2$ - $PC_2H_4PPh_2$ and $L' = Ph_2MeP$, Ph_3As and $(p-YC_6$ -*Y = F, H, CH* , *CH, 0, (CH,*),N] *and [PtMe-* $I''(1, 11, 21, 3)$ C_1 ₂, C_2 ₂, C_3 ₂, C_4 ₁, C_5 ₁, C_6 ₁, C_7 ₁, C_8 ₁, C_9 ₁, C_9 ₁, C_9 ₁, C_1 ¹ = $(PhO)_3P$ and $(p\text{-}YC_6H_4)_3P$; $Y = F$, CH_3 , CH_3O has *been described.*

The 31P NMR spectra of complexes 1 and 2 consisting of 36 and 12 lines respectively are discussed. The trans-effect of the para-substituted phosphines has been related to their electronic parameters by measuring the platinum-phosphorous coupling constants (JPt-P) which follows the trend $F < H <$ $CH_3 < (CH_3)_2N$.

Introduction

We have been involved for some time in the synthesis and the spectroscopic studies of low symmetry complexes of platinum metals containing mixed ligands of variable electronic and steric parameters that can be useful in the studies like *trans*effect of the ligands, and the asymmetric syntheses $[1-4]$. These complexes can also be useful catalysts since one or more weak donor ligands can be displaced readily by organic substrates [S]. There are, however, only a few reports of stable mixed ligands complexes of platinum available in literature $[6-9]$. In continuation of our investigations on the chemistry of mixed ligand complexes, here we describe the preparation and 31P NMR studies of cationic methylplatinum complexes containing a chelating 'diphos' $(\text{Ph}_2 \text{PC}_2 \text{H}_4 \text{PPh}_2; \text{ dpe})$ or 'arphos' $(Ph_2 PC_2 H_4 AsPh_2$; ape) ligand and a monodentatetertiary phosphine ligand, R_3P .

Results and Discussion

Reactions of chelating ligands such as 'diphos' $(Ph_2 PC_2 H_4 PPh_2)$ or 'arphos' $(Ph_2 AsC_2 H_4 PPh_2)$ with (COD)Pt(Me)Cl complex result in the displacement of cyclooctadienyl ligand and the complexes of the type cis-PtMe(Cl)((L') , 3 (where $L' =$ diphos or arphos) can be isolated in almost quantitative yields (eqn. 1).

$$
\begin{array}{ccc}\n\mathbf{M}e \\
\hline\n\end{array}
$$

Treatment of complex 3 dessolved in CH_2Cl_2 with $AgPF₆$ in methanol gives the corresponding cationic methanol complex, cis-[PtMe(MeOH)(L L']⁺, 4. Although the complex 4 is stable in solution for several hours, generally, it is not isolated but used *in situ.* Reactions of complex 4 with ligands such as tertiary phosphines or arsines, afford the mixed and complexes of the type $[PtMe(\hat{L}L')L'']^+$, (1 & (Scheme 2).

This way, several complexes **(1 &** 2) with ligands of variable degree of electronic parameters have been prepared [e.g. 1: where $\Omega L' = Ph_2PC_2H_4PPh_2$ and $L'' = Ph_3As$, Ph_2MeP , $(p-YC_6H_4)_3P$; $Y = F$, H, CH₃, CH₃O, (CH₃)₂N; 2: where \widehat{L}_1' = Ph₂PC₂H₄AsPh₂ and $L'' = (PhO)₃P, (p-YC₆H₄)₃P; Y = F, CH₃CH₃O],$ as air-stable crystalline white solids in high yields. These complexes can be recrystallized unchanged

0020-1693/82/0000-0000/\$02.75 0 Elsevier Sequoia/Printed in Switzerland

^{*}Author to whom correspondence should be directed at the present address: Ashland Chemical Company, P.O. Box 2219, Columbus, Ohio 43216, U.S.A.

TABLE I. ${}^{31}P^1H$ NMR Spectral Data of \Box P. Me \Box Complexes.⁸

 $\left| \int_{0}^{P_{A}} \sum_{\text{Pf}} \left\langle \int_{0}^{\text{Me}} \right|^{+} \right|^{2}$

^aSpectra were recorded in CH₂Cl₂/C₆D₆ at R. T. (dd) = double-doublet; (d) = doublet; (s) = singlet PF₆ appeared as septet at δP - 144.69 ppm; JP-F 717 Hz. bComplex tended to disproportionate into showed additional weak signals at δP = 14.47 ppm, JPtP = 1702 Hz. P_f Pt – Me $\left\{\left\{\begin{array}{c} P \ P_f - M e \ P_f \end{array}\right\}^+$ PF₆ showed additional weak signals at $\delta P = 14.47$ ppm, JPtP = 1702 Hz.

from a mixture of solvents such as $CH₂Cl₂/e$ ther or $CH₂Cl₂/hexane.$

The $31P$ NMR spectra of the complexes 1 (\widehat{LL}' = $Ph_2PC_2H_4PCH_2$) and L'' = tertiary phosphine) consist of 36 lines with no loss of either phosphorusphosphorus or platinum-phosphorus couplings, indicating that the integrity of the complexes were maintained in CH_2Cl_2/C_6D_6 solution. A 36-line spectrum is expected for the platinum complex (square planar geometry) with three magnetically non-equivalent phosphorus nuclei oriented in a manner as shown in structure **1.** Although the chelating phosphine used in complex **1** is symmetrical and

contains magnetically equivalent phosphorus nucle (in the free phosphine), upon complexation with platinum to form complex **1,** both phosphorus nuclei become magnetically non-equivalent due to the dissimilar groups at the respective trans-positions. Thus the phosphorus nuclei (represented by P_c in str. 1) *trans* to methyl group couples with both PA and PB in *cis* fashion $[JP_eP_A = 7.4 Hz$ and $JP_eP_B = 18.5 Hz)$ and appears as double-doublet associated with platinum satellites (JPtP_c = 1772 to 1890 Hz). On the other hand, the phosphorus (P_A) of the chelating phosphine which is *trans* to the mono-dentate tertiary phosphine ligand $(P_B R_3)$ displays a large *trans* coupling (with $P_B R_3$) (J $P_A P_B \approx 385$ Hz) and a smaller *cis* coupling (with P_c) (J $P_A P_c = 7.4$ Hz), thus appears as a double-doublet with platinum satellites (JPtP_A \approx 2575 to 2780 Hz). Similarly, the monodentate tertiary phosphine $(P_B R_3)$ appears as double-doublet (*trans* $JP_BP_A \approx 385$ Hz and *cis* $JP_BP_c = 18.5$ Hz) associated with platinum satellites (JPtP_B \approx 2723 to 2804 Hz) (Table I).

In all these complexes **1,** since the chelating phosphine $(\text{Ph}_2 \text{PC}_2 \text{H}_4 \text{PPh}_2)$ is a constant component for one 'side' of each molecule, the values for JPtPA may well then reflect just the effect of the phosphine ligand of the *trans* position *(i.e.,* trans-influence of the phosphine ligand) $[1, 2, 10, 11]$. For aryl phosphine ligands, the dominant factor for *fruns*influence is electronic rather than steric as no appreciable steric bulkiness is changed by changing the substituents at the *para-* position [2, 121. Upon examining the JPtP_A values (Table I), it is observed that this value decreases as the electron donating tendency of the para-substituent on the phenyl

^aSpectra were recorded in CH₂Cl₂/C₆D₆ at room temperature. Signals due to PF₆ appeared as septet at $\delta P \approx 177.70$ ppm with $JP-F = 712$ Hz. A 12 line spectrum is obtained for all the complexes.

phosphines increases, thus suggesting an increasing order of trans-effect. In other words, when electronic parameters (represented by ν cm⁻¹) [12] of the ligands $(p\text{-}Y\text{Ph})_3$ P follow the order: $Y = F > H >$ CH_3 > OCH₃ > N(CH₃)₂ then the *trans* effect follow the order: $Y = (CH_3)_2N > CH_3O > CH_3 >$ $H > F$. It is further observed that the JPtP_B value in the substituted aryl phosphine ligands increases systematically (with an exception of $Y = H$) as the electron donating tendency of the para-substituent increases.

Complexes $[PtMe(PR_3)(\hat{L}')]^+(2)$ containing the chelating 'arphos' $(\hat{L}L' = Ph_2 AsC_2H_4PPh_2)$ ligand are capable of forming both the trans (str. 2A) or cis (str. 2B) isomers. However, in the present studies only the *trans*-isomers have been obtained. The trans configuration has been ascertained on the basis of their ³¹P NMR spectra which show a 12line spectrum with a large phosphorus-phosphorus coupling $(\text{JP}_A\text{P}_B \approx 385 \text{ Hz})$ in all the cases (Table II). Again, in these cases, the trans-effect of the para-substitutes phenyl phosphine is reflected by the value of platinum-phosphorus $(IPtP_A)$ and the same trend is observed here as found in the case of complexes 1.

Experimental

Diethyl ether was dried over LiAlH4. Methanol was dried and distilled over magnesium metal. Dichloromethane was dried over anhydrous CaSO₄. Other solvents used were of spectroanalyzed grade and used without further purification. All the phosphine ligands were commercial samples used without further purification. CODPtMe₂ was prepared from the reaction of methyl lithium with CODPtCl2 in diethyl ether. CODPt(Me)Cl was prepared from the reaction of CODPtMe₂ with equimolar amount of HCl. ¹H NMR spectra were obtained in $CH₂Cl₂$ solution with TMS as internal standard, on a Varian A-60 or T-60 spectrometer. ³¹P NMR spectra were obtained in CH_2Cl_2/C_6D_6 solution on a Brucker-60 F.T. instrument and H_3PO_4 was used as an external standard. Microanalyses were performed by M.H.W. Microanalytical Lab., Phoenix, Arizona.

Preparation of $[Pt(\hat{LL}^{\prime})/Me)Cl]$ (3) $[\hat{LL}^{\prime} = Ph_{2}PC_{2}^{-}]$ H_4 PPh₂ or Ph₂PC₂H₄AsPh₂]

Complex 3 was prepared from the reaction of 'diphos' or 'arphos' with CODPt(Me)Cl complex in CH_2Cl_2 . Typically, when $Ph_2 AsC_2H_4$ PPh₂ (1.10 g; 2.5 mmol) was added to a solution of CODPt(Me)Cl (0.88 g, 2.50 mmol) in $CH₂Cl₂$ stirred magnetically at room temperature, a white insoluble solid appeared immediately. The reaction mixture was further stirred for \approx 1 h and was concentrated. The insoluble solid was filtered, washed with hexane and ether and dried under reduced pressure. Yield (≈86%). Anal. Found: C, 47.4; H, 4.02; Cl, 5.10. Calcd. for [PtMe- $(Cl)(Ph₂ AsC₂H₄ PPh₂)]$: C, 47.2; H, 3.96; Cl, 5.16%.

Preparation of $[PtMe(CH_3OH)(L1')]$ ⁺ $PF_6^ (4)$ $[(L^T) = (Ph₂ PC₂ H₄ PPh₂) or (Ph₂ AsCgH₄ PPh₂)]$

The methanol cation, 4, was prepared under anaerobic conditions by the slow addition of a methanolic solution of an equimolar amount of AgPF₆ to a rapidly stirred $CH₂Cl₂$ solution of complex 3. The white precipitate of AgCl formed during the reaction time (1 h) was centrifuged and filtered. The filtrate was reduced to small volume in vacuo. Careful addition of hexane or diethyl ether provided the crystalline solid of 4, which was filtered, recrystallized from $CH_2Cl_2/ether/hexane$ and dried in vacuo. Generally 4 was not isolated, but was used in situ for further reactions as described below.

S No.	Complex: $[PtMe(\widehat{L}L')L'']$ ⁺ PF_6^- ($\widehat{L}L'$) = $Ph_2PC_2H_4PPh_2$ $L'' =$	Solvent of Crystallization	M.P. (C)	Analysis (%) Found (calcd.)	
				${\bf C}$	$\mathbf H$
1	$(p$ -FC ₆ H ₄) ₃ P	CH_2Cl_2	260(d)	50.9	3.72
				(50.5)	(3.65)
2	$(C_6H_5)_3P$	CH ₂ Cl ₂ /hexane	185	52.0	4.10
				(52.3)	(4.07)
3	$(p-\text{CH}_3\text{C}_6\text{H}_4)_3\text{P}$	CH ₂ Cl ₂ /hexane	155	54.8	4.59
				(54.5)	(4.54)
4	$(p-\text{CH}_3\text{OC}_6\text{H}_4)_{3}P$	$CH2Cl2/hexane/ether$	148	52.6	4.52
				(52.1)	(4.34)
5	$(p$ -(CH ₃) ₂ NC ₆ H ₄) ₃ P	CH ₂ Cl ₂ /ether	-	53.1	4.96
				(53.5)	(4.98)
6	Ph ₂ MeP	CH ₂ Cl ₂ /hexane	175	51.0	4.25
				(50.4)	(4.20)
7	$(C_6H_5)_3As$ $(\widehat{L})=Ph_2PC_2H_4AsPh_2$	CH ₂ Cl ₂ /hexane	180	51.2	3.96
				(51.0)	(3.97)
8	$(p$ -FC6H4)3P	CH ₂ Cl ₂ /hexane	$\overline{}$	48.8	3.72
				(48.5)	(3.50)
9	$(p$ -FC ₆ H ₄) ₃ P	CH ₂ Cl ₂ /ether	142	52.4	4.51
				(52.3)	(4.36)
10	$(p-\text{CH}_3\text{OC}_6\text{H}_4)_3P$	CH ₂ Cl ₂ /hexane	130	50.6	4.34
				(50.1)	(4.18)
11	$(Ph_3O)_3P$	CH ₂ Cl ₂ /ether	171	49.2	3.84
				(48.8)	(3.79)

TABLE III. Analytical Data of $[PtMe(\widehat{L}^{\prime})L^{\prime\prime}]^{\dagger}PF_{6}^{-}$ Complexes.

Preparation of [PtMe(PR₃)($\hat{L}L'$ *)]*⁺*PF₆ (1 & 2)* $[(L^2)^2 = Ph_2PC_2H_4PPh_2$ or $(Ph_2AsC_2H_4PPh_2)]$

A solution of complex 4 (0.5 mmol) was prepared in CH_2Cl_2/CH_3OH by the above described procedure and $PR₃$ (0.5 mmol) was introduced with stirring. After being stirred for \approx 2 h, the solution was reduced to small volume *in vacua* and the dropwise addition of diethyl ether or hexane resulted in the formation of white crystalline solid. The solid was isolated, recrystallized from $CH_2Cl_2/ether/hexane$, washed with diethyl ether and dried *in vacua* (Yield: 70-85s). Analytical data are given in Table III and ³¹P NMR spectra in Tables I and II.

References

1 H. C. Clark, A. B. Goel, R. G. Goel and S. Goel, Inorg. *Chem.,* 19, 3220 (1980).

- 2 A. B. Goel, S. Goel and H. C. Clark, Syn. React. Inorg. *Met. Org. Chem., II, 289* (1981).
- 3 H. C. Clark, A. B. Goel and C. S. Wong, *J. Organometal. Chem., Z90,* Cl01 (1980).
- 4 H. C. Clark, A. B. Goel and S. Goel, *Inorg. Chem.*, 18, *2803* (1979).
- 5 H. C. Clark, C. Billard and C. S. Wong, *J. Organometal* Chem., 190, Cl05 (1980).
- 6 J. Chatt and L. M. Venanzi, *J. Chem. Sot,., 3858* (1955); 2445 (1957).
- 1 F. H. Allen and S. N. Sze, *J. Chem. Sot., A, 2054* (1971).
- 8 C. Eaborn, K. J. Odell and A. Pidcock, J. Chem. Soc. *Dalton Trans., 1288* (1978).
- 9 J. A. Davies, F. R. Hartley and S. G. Murray, *Inorg. Chem., 19, 2299* (1980).
- 10 A. Pidcock, R. E. Richards and L. M. Venanzi, *J. Chem. Sot., A, 1707* (1966).
- 11 F. H. Allen, A. Pidcock and C. R. Waterhouse, *J. Chem. Sot., A, 2807* (1970).
- 12 C. A. Tolman, *Chem. Rev., 77, 313* (1977).