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The Nd**, Ho** and Eu*® compounds with
glycine, alanine and glutamic acid were synthesized
and obtained as monocrystals.

Absorption spectra in the range 8000-35500
cm ™! were measured along the crystallographic axes
at room temperature on a Cary 14 spectrophoto-
meter.

Luminescence spectra were recorded at the same
temperature in the range 9000—16 600 cm™".

Intensities of the f—f transitions were analyzed on
the basis of the Judd theory, taking the dependence
of intensity on the crystallographic axis position into
account.

Considerable differences in hypersensitive transi-
tions in crystals with alanine, glycine and glutamic
acid, whose symmetry changed from triclinic to
monoclinic, were explained in terms of differences in
the Me—O0 distances.

Introduction

The lanthanides are often used as spectroscopic
probes in systems of biological importance [1,2].
Since Ln*® ions can substitute the Ca*? ion, the
explanation of the bonding mode of lanthanide ions
with aminoacids seemed reasonable. Studies in solu-
tion [3—10] have shown that aminoacids connect
the lanthanide ions through the oxygen atoms of
carboxyl groups, and the bonding via nitrogen of the
amino group in the pH range 1.5-5.6 seems unlikely
[3,9].

From our investigations it follows that the dimeric
or polynuclear form may also occur in those solutions
[9]. The possibility to create such a form in pH over
5.6 has been reported [3, 7]. Spectroscopic and crys-
tallographic studies of lanthanide compounds with
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aminoacids in solid state were up to now limited to
the Nd compounds with glycine. Poray-Koshits [11]
has reported the initial crystallographic data for
NdCl3(Gly);+-3H,0; we have published the spectros-
copic and crystallographic data for Nd(Gly)s(ClO4);*
4 5H,0 crystals [12]. For this reason we have ex-
tended our studies to crystals of lanthanide com-
pounds with aminoacids, to elucidate their structure
and spectroscopic properties. Luminescence and
absorption spectroscopy, as well as X-ray methods,
were applied.

Experimental

The Nd*3, Ho*? and Eu*? complexes with glycine,
alanine and glutamic acid were synthesized and ob-
tained as monocrystals from aqueous solutions at the
pH 1.5-3.5. The concentration of Ln*> jons always
exceeded the aminoacid concentration. Density of
the obtained crystals was measured by the flotation
method in a mixture of chloroform and ethylene
bromide. The concentrations of Ln** jons in crystals
determined by the EDTA titration are as follows:
Nd(Gly);(C104)3°4.5H,0, 2.799 M; Nd(Ala),(Cl-
0,)3-5H,0, 2.950 M; NdGlu(ClO,),-7H,0, 3.4185
M; Ho(Gly);(ClO,)5-5H,0, 2.8212 M; Ho(Ala),-
(C104)3°5H,0, 2.8781 M; HoGlu(ClO,4),*7H,0,
3.5882 M.

Complexes with glycine and alanine crystallized
in the triclinic system with the crystal data for Nd-
(Gly)5(Ci04)3°4.5H,0: a=11.554 A, b=14.108 A,
c=15660 A, «=97.14, $=102.82, v=105.28,
V'=235525 A, Mw.=747.7, D, = 2.129(3) g cm ?,
Dy =2.103(1) g cm™3, space group P1; Z=4; and
for Eu(Ala),(Ci0,)3°5H,0 [13]: a=11.071 A, b=
11338 A, ¢=11990 A, a=12343, $=100.94,
v =101.59, space group P1.

The crystals seem to be isomorphic with the other
lanthanide complexes. Monocrystals of Ho(Glu)-
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(C104),°7H,0 exhibit a monoclinic symmetry and
are isomorphic with Eu*3 and Nd** complexes.
Preliminary crystal data are as follows: a=11.26
A, b=1627 A, ¢=21.05 A, $=102.38, space
group P2;. Absorption spectra of monocrystals
polished along the crystallographic axes were re-
corded at room temperature, in the range 8000--
35000 ¢cm™! on a Cary 14 spectrophotometer. The
areas of the absorption bands were calculated numer-
ically by the graphical integration method and ex-
pressed in terms of the oscillator strength.

The fluorescence spectra were excited with an
HBO 200 lamp with UG-1 and UG-11 glass filters and
recorded on a GDM 1000 grating monochromator
coupled with a cooled photomultiplier M10 FD9
(Carl Zeiss, Jena).

The relative intensities of the *Dy—7F; and
5Do~>"Fs (J=0,1,2) transitions for Eu** com-
plexes were measured planimetrically, because the
response of the monochromator in the measured
range is almost constant.

Results and Discussion

The absorption spectra of Nd*3 complexes with
glycine measured along the crystallographic axes
are shown in Fig. 1. In Fig. 2 are presented the
spectra of holmium with glycine, alanine and glutam-
ic acid compounds. In Fig. 3 are shown the spectra
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for 3 orientations of the crystal for the Nd complex
with glutamic acid, in the region particularly sensi-
tive to the orientation changes.

The absorption spectra are complex, and are dif-
ferent along the three crystallographic axes. 4fY
transitions in the absorption spectra of Ln* ions
usually correspond to the transition from the ground
state Yy > Yy,

The band intensities correspond mainly to the
contribution of the electric dipole transitions and,
for particular bands, also to a contribution of the
magnetic dipole transitions. The measured oscillator
strengths can be expressed by the relation:

2303 mc? %
exp = W" f E(a)do (1)
al
where €() is the molar extinction of the band at the
wavenumber o (cm™'); other symbols have their
usual meaning.

These values were determined for all bands in the
measured spectral range and are tabulated in Tables
I and II. Among the f—f transitions in lanthanide
ions, some satisfying the selection rule [AJ}<?2
manifest some extraordinary sensitivity to the varia-
tion of ion environment. These transitions are termed
the hypersensitive ones. Figure 4 shows the hyper-
sensitive transitions *lo,, > *Gs,5, 2G,/, for Nd*3
ion compounds with alanine, glycine and glutamic
acid. Smaller changes are seen in the shape of the
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Fig. 1. Absorption spectrum along the crystallographic axes of Nd(Gly)3(ClO4)3:4.5H,0 crystal.
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Fig. 2. Absorption spectra of holmium compounds with glycine, alanine and glutamic acid.
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Fig. 3. Absorption spectrum along the XYZ crystallographic axes of Nd(Glu)(ClO4),*7H,O crystal.

spectra for glutamic acid complex, depending on
orientation, than for complexes with glycine.
Hypersensitive transitions differ considerably in
intensity decay for different orientations of the
crystal (see Tables I and II). There also appear differ-

ences in the character of this transition for the Nd*3
and Ho*® complexes with glycine, alanine and
glutamic acid (see Figs. 2, 4). Examination of the
luminescence spectra of Eu*3 crystals with glycine,
alanine and glutamic acid, as well as absorption
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TABLE II. Oscillator Strengths of f—f Transitions for Ho*3 Crystals.

Spectral sLy [Ho(Gly)3](C104)3+  [Ho(Ala);](Cl04)3+  [HoGlul(ClOy),+
region (A) SH,0X SH,0X 7H,0
12500-11111 51¢ 110.29 36.31 32.50
9259-8771 Sl 33.72 137.22 135.67

7692-7407 S5l ~0 ~0 ~0
66666250 SF; 343.82 458.87 425.55
5555-5208 58,, 5F, 534.16 669.05 555.29
4975-4784 SF, 173.46 245.03 235.85
4784-4629 SF,, K, 132.58 176.81 157.09
4629-4310 5Gg, 5F 1024.58 1012.41 1137.61
4273-4065 (5G, 3G)s 302.53 385.57 386.11
40003787 3Gy, 3K, 79.60 108.14 104.03
36763508 (5G, *H)s, (°F, 3F, 5G),, 3Hs 492.50 450.44 493.20
3508-3378 5Gs,3Lg 132.12 133.82 106.46
3378-3278 (3F, 3H, 3G)4, 3K¢ 88.53 90.70 80.97
3278-3164 3G,
3039-3012 3Dj, 3P, ~0 ~0 ~0
2976-2890 3M,q, 3L 130.68 142.22 96.65
28902816 (°G, 3D, 3G)4, (°F, 3G)3 287.60 341.32 291.94
2840-2690 3Py, (3H, 5D, IG)4, 3F,, Ls, (*H, 3G)s 312.8 487.95 243.76
The 7) parameters values
Compound 72+10° 14+10° 16°10°
Ho(Gly)3(C104)3°SH,0 2.69 + 046 4.18 £ 0.59 4.08 +0.52
Ho(Ala),(Cl04)3+5H,0 2.09 £ 0.24 4.85 + 0.32 5.19+0.26
HoGlu(Cl0,4),7H,0 3.07 £ 0.45 4.39 £ 0.56 4.48 + 0.50
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Fig. 4. Behaviour of hypersensitive band 419/2*4G5,2,
%G,y for Nd*? jon complexes with glycine, alanine and
glutamic acid.

spectra for neodymium and holmium complexes,
revealed quite remarkable differences in the Ln*?
ion environment which may result either from the
different coordination mode of glutamic acid, alanine
and glycine, or symmetry changes (see Figs. 1, 2,3
and 5). Tables I and II give oscillator strengths for
Nd** and Ho*® compounds. A relation was set up
between the intensities of f—f transitions and the
position of crystallographic axes.

Based on the Judd theory, the intensities of f—f
transitions were analyzed, taking into account their
dependence on the directions of axes in the crystal.

From the Judd equation

P= X

A=2,4,6

To(YINUNINY'T')2 /23 + 1 )

where: (FNyJIJUNIfNY'T')—the reduced matrix ele-
ment of the unit tensor operator; T)—phenom-
enological parameters estimated from experimental
data; o—the wavenumber in cm™?; the 7, parameters
were evaluated using the least squares method (JCH
30 programme). One can determine £2) = (1.085-
10'x)" -1\ where: x = (n? +2)%/9n, whose values are
frequently discussed in the literature. Since the Judd-
Ofelt eqn. (2) has no polarization or angular details
the total integrated absorbances (over direction) are
required to fit the theory. For optical isotropic
materials (cubic crystals and glasses) this presents no
difficulty. For the case of other crystals the absorp-
tion spectrum is somewhat different in structure,
when measured along the three crystallographic
directions.

The oscillator strengths (band for band) stay about
the same (within 5%), but for others change more.
In Figs. 1 and 2 and in Tables I and II one can notice
such a change for hypersensitive transitions, and
transitions %Iy, > *F3,, for Nd** and 5I; - (°G,
3H)5, (SF, 3F, SG)z, 3H6; SIB _)5G3, 3L9 for Ho*®.
The best procedure is to average the oscillator
strengths of each band over the three directions.

In Tables I and Il are presented the oscillator
strength values for three orientations of a crystal of
neodymium compound with glutamic acid; similar
data were obtained for Nd*® complex with glycine
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Fig. 5. Behaviour of fluorescence transition 5Dy — "F for Eu*3 ion complexes with glycine, alanine and glutamic acid.

[12]. For the other crystals we report the oscillator
strength value for only one orientation of a crystal.

Dimensions of crystals of holmium complexes
with aminoacids and those of Nd*? with alanine
prevent their polishing in the direction of axes Y
and Z. For those reasons the Judd parameters for
Nd complexes with glycine [12] and glutamic acid
were calculated from the averaged oscillator strength
values; for the other ones the data for an axis were
used.

It should be noted that the intensity of hyper-
sensitive transition *I,, > *Gs,,, 2G,,, for Nd*3
ion and *Ig > 3G, F; for Ho*? ion is not so high as
could be expected for such a low symmetry. The
oscillator strength values of those transitions for
complexes with glutamic acid exceed those for
complexes with glycine and alanine, although the
latter ones have lower symmetry.

The values of 7, are gathered in Tables I and II.
For three distinct orientations of the crystal, the
significant differences were observed in the 7, para-
meters. The change of the 7, parameters towards
glutamic acid-alanine-glycine was observed. The 7,
values exceeded those found for aquo ions and tetra-
phosphates. The trend of the 7, parameters and of
oscillator strength values of hypersensitive transition
changes in studied compounds seems to point out
that the intensities of hypersensitive transitions are
influenced not only by the symmetry of Ln ion, but
propably also by the metal—oxygen distances.

Similar changes as in the absorption spectra are
observed in the luminescence spectra. Calculated
relative intensities of

1°D, - "F,
I°D, - "F,4

1°D, - 'F,

an —_
15D, - 'F,

transitions for Eu*? ion compounds are presented in
Table III. The change of the relative intensity of
hypersensitive Dy = ’F, transition in luminescence
spectra is greater for the Eu complex with glutamic
acid than for the complex with alanine and glycine.

TABLE III. Fluorescent ratios of Integral Intensities from the
5Dy Level into the 7F Levels.

I5Do = "F, I3Do—"F1 0

15Dg—"Fq 1Dy "F4
[Eu(Glu)](ClO4),+ D0 4.15 1.36
[Eu(Gly)3](Cl04)3+D,0 3.84 1.44
[Eu(Ala);](Cl04)3+ D0 3.57 1.36

Since the europium compounds are isomorphic
with Nd and Ho compounds the results obtained
from the luminescence spectra seem to support the
hypothesis that the intensity of hypersensitive transi-
tions is not influenced solely by symmetry changes.

On the other hand, it follows from crystallograph-
ic investigations of the glycine complex [12] and of
calcium complexes with glycine and glutamic acid
[14, 15] that there could be considerable differences
in the bonding mode of the functional groups of
aminoacids. The Me—L bonding distances can also
vary. The influence of the latter ones can thus be
considered after the complete structures of the
compounds under study are solved.
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Conclusions

1) The relation between the f-f transition inten-
sity and the position of crystallographic axis of a
crystal has been stated.

2) On the basis of absorption and luminescence
studies the differences in structure of three types of
complexes of Ln** ion with glycine, alanine and
glutamic acid have been shown.

3)It was found and confirmed that symmetry
does not have the sole influence on intensity changes
of hypersensitive transitions in the examined com-
pounds.
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