The ¹³C Isotope Effect in the ⁵¹V NMR Spectra of $[V(^{12}CO)_{6-n}(^{13}CO)_n]^-$

KLAUS IHMELS, DIETER REHDER* and VOLKER PANK

Institut für Anorganische Chemie, Martin Luther King Platz 6, D 2-Hamburg 13, F.R.G.

Received August 22, 1984

The origin and extent of the ligand-induced isotope effect upon metal shielding in transition metal complexes have been of some practical and theoretical interest (for data compilation and discussion see [1]). There is only one report for the ⁵¹V nucleus in $[V(^{16}O)_{4-n}(^{17}O)_n]^{3-}$, where a slight asymmetry of the ⁵¹ resonance of $[V(^{16}O)_4]^{3-}$, caused by $[V(^{16}O)_3(^{17}O)]^{3-}$ was noted [2]. Here we report on the ¹³C isotope shift of the ⁵¹V NMR signals in $[V(^{12}CO)_{6-n}(^{13}CO)_n]^{-}$. In Fig. 1, the ⁵¹V NMR spectra of ^{13}CO enriched (12% and 42%, respectively) hexacarbonylvanadate samples are shown along with the characteristic IR and ^{13}C NMR spectra. For data, see Table I.

*Author to whom correspondence should be addressed.

For preparation, red-violet $[Et_4N][V(CO)_5THF]$ was generated by UV irradiation (Duran filter, 195 K, argon atmosphere) [3] of a THF solution containing 100 mg $[Et_4N][V({}^{12}CO)_6]$ (0.29 mmol) in 15 ml. Removal of the photochemically released ${}^{12}CO$ and subsequent treatment with ${}^{13}CO$, followed by 20 min shaking at room temperature, yielded yellow $[Et_4N]$ - $[V({}^{12}CO)_{6-n}({}^{13}CO)_n]$ 12% enriched in ${}^{13}CO$ (I). Two further cycles of this procedure yielded a complex mixture containing 42% ${}^{13}CO$ (II).

The IR spectra in the CO stretching region exhibit a pattern consistent with the loss of O_h symmetry on substituting ¹²CO partially by ¹³CO. However, a differentiation of the ten species which might be present cannot be carried out. The assignments of the five absorptions (Fig. 1 and Table I) follow those of Bor and Jung for ${}^{13}CO$ enriched [Mo(CO)₆] [4]. The ${}^{13}C$ NMR spectra show only one single eight-line system in the temperature range 300 to 235 K, indicating equivalence of all of the ¹³CO (and possibly excluding the isomers $mer \cdot [V(^{12}CO)_3(^{13}CO)_3]^-$ and cis- $[V(^{12}CO)_2(^{13}CO)_4]^-)$. The pattern, which is produced by coupling to the spin 7/2 nucleus ⁵¹V, is reminiscent of that of the ³¹P resonance of $[V(PF_3)_6]^-$ [1, 5], and also of the ¹³C resonance of $[V(\eta^{5}-C_{5}H_{5})(CO)_{4}]$ [6]. The signal position

Fig. 1. ⁵¹V NMR (23.66 MHz, relative to VOCl₃, external lock acetone-d₆, pulse width 8 μ s, acquisition time 0.16 s, 300(1) K, 1000 scans) of 0.02 M solutions of [Et₄N][V(¹²CO)₆-n(¹³CO)_n] containing 12% (I) and 42% ¹³CO (II), and the corresponding IR (0.1 mm KBr cuvettes) and ¹³C NMR (300 K) spectra. For the numbering of the signals see Table I.

0020-1693/85/\$3.30

© Elsevier Sequoia/Printed in Switzerland

TABLE I.	⁵¹ V	NMR ^a	anđ	IR	Data.	
----------	-----------------	------------------	-----	----	-------	--

δ(⁵¹ V) (ppm)	$\Delta \delta (V)^{b}$ (ppm)	ν (CO) (cm ⁻¹)	No. and Assignment
-1953.7	0		$1 [V(^{12}CO)_6]^{-1}$
	-0.39(1)		$2 [V(^{12}CO)_5^{13}CO]^{-1}$
	-0.52(2)		$3 [V(^{12}CO)_4(^{13}CO)_2]^{-1}$
	-0.78(5)		4 $[V(^{12}CO)_3(^{13}CO)_3]^{-1}$
	-1.08(10)		5 $[V(^{12}CO)_2(^{13}CO)_4]^-$
		2008	2
		1889	(1), 2, trans-3, 4
		1856	1, 2, cis/trans-3, 5
		1832	2, cis-3, 4, 5
		1820(sh)	trans-3, 4, 5

^a All ¹ $J(^{13}C^{-51}V)$ are 116 Hz. ^b $\delta [V(^{12}CO)_{6-n}(^{13}CO)_n]^- - \delta [V(^{12}CO)_6]^-$.

(centered at 225.3 ppm) and ${}^{1}J({}^{13}C-{}^{51}V)$ (116 Hz) agree with the corresponding parameters reported by Bodner and Todd for [Na(diglyme)₂][V(CO)₆] [7] with ${}^{13}CO$ in natural abundance.

The ⁵¹V NMR of I is the superposition of a singlet (1) a doublet (2) and a triplet (3) in the intensity ratio 1/2/3 = 1/1/0.3. II contains, in addition, a quartet (4) and a quintet (5), and the intensity ratio is 2/3/4/5 = 0.6/1.8/1/1. The different species are clearly discernable. The decrease in symmetry does not affect the signal positions; a similar observation holds for the complexes $[V(CO)_{6-n}(PF_3)_n]^-$ [6] and has been accounted for in terms of the very similar π -acceptor properties of the CO and PF₃ ligands.

The slight but clearly distinct low-frequency (highfield) shift of the ⁵¹V resonances as the contents of ¹³CO increase is an isotope effect in the 'correct' direction, although much less pronounced than e.g. for the ⁵⁹Co resonances in the isoelectronic $[Co({}^{12}CN)_{6-n}({}^{13}CN)_n]^{3-}$ [8] (this may be a consequence of the greater intrinsic shielding sensitivity of the ⁵⁹Co nucleus [1]). In analogy to the hexacyanocobaltates, the low-frequency shift of the ⁵¹V resonance may be interpreted in terms of decreasing energy of vibronic levels, which leads to an increase of the HOMO-LUMO separation and thus to diminished paramagnetic de-shielding contributions (i.e. increase of the overall shielding). This effect is expected to impose a linear increase of metal shielding with increasing ligand isotope substitution, as observed with the series of $[Co(^{12}CN)_{6-n}]$ $(^{13}CN)_n$]³⁻ complexes [8]. However, in our case

⁵¹V-shielding does not increase smoothly as the number of ¹³CO ligands increases (cf. Table I). An alternative interpretation is a consideration on the basic of differing polarizabilities of ¹²CO and ¹³CO. The polarizability concept has been employed successfully to explain the so-called normal trend (*i.e.* increase) of metal shielding in low-valent transition metal compounds as the polarizability of the ligand functions attached to the metal center increases [1, 9]. In the frame-work of this concept, the softer ¹³CO should induce—relative to ¹²CO—a more pronounced covalency of the V–CO bond and an expansion of the V(3d) cloud, and thus a decrease of the de-shielding term and increase of overall shielding in a complex, not necessarily linear manner.

References

- 1 D. Rehder, Magn. Reson. Rev., 9, 125 (1984).
- 2 O. Lutz, W. Nepple and A. Nolle, Z. Natuforsch., Teil A:, 31, 1046 (1976).
- 3 K. Ihmels and D. Rehder, Chem. Ber., in press.
- 4 G. Bor and G. Jung, Inorg. Chim. Acta, 3, 799 (1969).
- 5 D. Rehder, H.-Ch. Bechthold and K. Paulsen, J. Magn. Reson., 40, 305 (1980).
- 6 H.-Ch. Bechthold, A. Keçeci, D. Rehder, H. Schmidt and M. Siewing, Z. Naturforsch., Teil B:, 37, 348 (1982).
- 7 G. R. Bodner and L. J. Todd, *Inorg. Chem.*, 13, 1335 (1974).
- 8 P. C. Lauterbur, J. Chem. Phys., 42, 799 (1965).
- 9 R. Talay and D. Rehder, J. Organomet. Chem., 262, 25 (1984).