Cd-Cd Coupling in the ¹¹³Cd NMR Spectra (includ**ing 2dimensional COSY) of Molecular Polycadmium Thioiate Aggregates**

IAN G. DANCE and JOHN K. SAUNDERS

School of Chemistry, University of New South Wales, Kensington, N.S. W. 2033, Australia

Received August 25,1984

We report the measurement of Cd $-Cd²J$ coupling in the natural abundance* ¹¹³Cd NMR spectra of polycadmium thiolate/chalcogenide aggregates of known crystal structure, and the applications of ¹¹³Cd NMR to investigation of the reactions of these aggregates. These results establish characteristics of Cd-Cd coupling, previously observed in 113 Cd enriched metallothioneins [1] and in oligomers of unknown structure with a bis-cysteinyl derivative of **EDTA** [2]

The l13Cd spectrum (obtained on a Bruker The ca spectrum (cotained on a blake $CXP-300$ spectrometer at 66.6 MHz, external reference 0.2 M aqueous $Cd(NO₃)$ of the α damantanoid cage $\text{[C4 (CDL)} \quad 12^- (M_2 \text{ N}^{\dagger}) \quad 1 \quad 12.4$ $\frac{1}{2}$ MeCN contains a single resonance at 578 ppm in MeCN contains a single resonance at 578 ppm (300 K), and shows the doublet satellites each of relative intensity ca. 20% due to 113 Cd-S- 111 Cd isotope coupling with $^{2}J(^{113}Cd-S-^{111}Cd) = 44$ Hz. The Cd₄- S_{10} core of 1 has virtual T_d symmetry, and consequently the calculated intensities of the septuplet for **1** are 0.04, 1.55, 21.4, 100, 21.4, 1.55, 0.04. By partial l13Cd enrichment of **1** and measurement of $\frac{11}{C}$ d. Dean has observed all of the expected satellite peaks [5]. This Cd-Cd coupling is observed even though there is rapid (NMR time scale) exchange of thiolate ligands in **1** [6] and confirms that the exchange process is an intramolecular exchange of bridging and terminal thiolate ligands.

^{*} $\frac{^{113}Cd}{^{116}Cd}$, I = ½, 12.3%, $\frac{^{111}Cd}{^{116}Cd}$, I = ½, 12.8%.

The tetra-adamantanoid aggregate $[S_4Cd_{10}$ - $(SPh)_{16}$ ⁴⁻ 2, also with virtual T_d symmetry for the $Cd_{10}S_{20}$ core, contains six inner Cd atoms (Cd_i) arrayed as an octahedron, four outer Cd atoms (Cd_o) arrayed as a tetrahedron, four triply-bridging sulfide ions, twelve doubly-bridging thiolate ligands (S_{br}) , and four terminal thiolate ligands, with structural equivalence occurring in each set [4]. The $¹¹³$ Cd spectrum of 2 (DMF, 300 K, see Fig. 1) has</sup> the Cd_i resonance at 668 ppm and the Cd_o resonance at 585 ppm. The Cd_i signal is attended by the doublet and triplet wings of the 0.0026 , 0.147 , 3.02 , 27.9, 100, 27.9, 3.02, 0.147, 0.0026 nonaplet calcu-

nances of $\left[S_4 \text{Cd}_{10}(SPh)_{16} \right]^{4-}$ 2, in DMF solution, 300 K, rig. 1. The α_1 (000 ppm) and α_0 (505 ppm) 1686 reference 0.2 M aqueous $Cd(NO₃)₂$. The weak triplet satellites at ± 82 Hz to Cd_i are revealed with different processing of the FID.

0 Elsevier Sequoia/Printed in Switzerland

TABLE I. ¹¹³Cd Resonances Observed^a in Reactions of $[S_4Cd_{10}(SPh)_{16}]^{4-}$ with Cd²⁺ in DMF.

Lineb	Comments
670	doublet satellites, $J = 73$ Hz intensity correlated
669	with peak 584
668	$[S_4Cd_{10}(SPh)_{16}]^{4-}$, doublet, triplet satellites, $J = 82$ Hz
	doublet satellites, $J = 18$ Hz
658	temporal intermediate at 300 K
638	intensity correlated with 588 in solutions heated to $350 K$:
628	temporal intermediate at 300 K
618	doublet satellites, $J = 35$ Hz doublet satellites, $J = 104$ Hz:
613	temporal intermediate at 300 K
608	doublet satellites, $J = 42$ Hz: coupled (COSY, and by intensity correlation with 567)
599	at $O^c > 0.6$, low temperature
590	doublet satellites, $J = 42$ Hz: dominant when $Q > 1.8$
588	(see 638)
585	$[S_4Cd_{10}(SPh)_{16}]^{4-}$, doublet satellites, $J = 18$ Hz
584	(see 670, 669)
580	often broad and not resolved, intense in solutions weak
578	heated to $350 K, Q < 0.8$
567	doublet, triplet satellites, $J = 43$ Hz: (see 608)
563	weak
557	doublet satellites, $J = 45$ Hz
539	weak
501	broad, for $t < 100$ min

and abundance '13Cd, 66.547 MHz. bresonances are labelled with the chemical shift (ppm, referenced to 0.2 M aqueous to τ Natural abundance τ Cd, 66.547 MHz. τ Resonances are labelled with the chemical shift (ppm, referenced to 0.2 m aqueous $Cd(NO₃)₂$) at 300 K. Temperature dependences of chemical shifts are substantial (up to 0.2 ppm K⁻¹) and variable. ^cQ is the molar ratio Cd²⁺: $[S₄Cd₁₀(SPh)₁₆]$ ⁴⁻.

lated for 113σ is 111σ is the natural at na ated for α_i ⁻⁻⁻⁻Cd_i isotope coupling at hatural abundance, with $^{2}J(^{113}\text{Cd}_{1}-\text{S}_{-}^{-111}\text{Cd}_{1}) = 82$ Hz. The Cd_o-S-Cd_i coupling through doubly-bridging thiolate is 18 Hz^{**}, and is manifest as its doublet components on the Cd_i and Cd_o resonances. A 2-D COSY spectrum[#] of 2 clearly shows the cross peak: this is the first report of a Cd-Cd COSY measure-
ment. In the isostructural selenide homologue, $[Se₄$ ment. In the isostructural selement nomologue, $[Se_4, Se_5]$ $\text{Ca}_{10}(SFR)_{16}$], λ , $\lambda =$ Se, Ca_{1} is at 392 ppm, Ca_{0} at $3/6$ ppm, $J(^{-1}Ca_i-3)$ T_{eq} (2₁- $\%$ 80) = 151 Hz.

The \sim C spectrum of \angle (200–500 K) reveals the coupling to Ca of C_1 and $C_{2,6}$ in both the bridgi and terminal thiolate ligands: bridging, \mathcal{I} (\mathcal{I}^3C-S $t_{eq} = 9$ Hz, $J(12-3-14)$ Cd) = 9 Hz S-111*113Cd) = 20 Hz. Coalescence of the terminal $S-$ ^{111,113}Cd) = 20 Hz. Coalescence of the terminal and bridging thiolate resonances occurs at *ca*. 340 K, due to intramolecular exchange. The exchange in κ , que to intramolecular exchange. The exchange in 2 is much slower than that in 1 , but probably follows the same mechanism $[6]$. ϵ same mechanism $\lbrack 0 \rbrack$.

 $ca - ca$ coupling of the type reported field provides unequivocal reference data, and enhances the prospects of determining solution structure for polycadmium species (although enrichment may be required to reveal complete satellite patterns in high symmetry aggregates). We have deployed ¹¹³Cd NMR to investigate the reactions of 2 with electrophiles, $\frac{1}{2}$ particularly with $\text{Ca}(\text{NU}_3)_2$ in DMF solution. Kich \sim Ca spectra are cotained, revealing multiple product ucts and reaction pathways, with the following
principal characteristics: α is sensitive to small proportions of α is sensitive to small proportions of α , α ,

 μ maximum product concentrations of μ with maximum product concentrations occurring when the Cd^{2+} : $[S_4Cd_{10}(SPh)_{16}]^{4-}$ molar ratio, Q, is in the range 0.2 to 1.5. \ln the range 0.2 to 1.5 .

 $\frac{1}{10}$ there are at least two stages of reaction, with the first stage complete within 5 min at 273 K, while the second stage has a half-life of many hrs at 315 K (dependent on concentrations of both Cd^{2+} and $2(3-7 \times 10^{-2} \text{ M } \text{Cd}_{10})$).

(iii) Solutions heated to 350 K give different products. (i) is a resonance observed, and are listed, and are listed,

 $\left(\frac{1}{1}\right)$ is new resonances are observed, and are used

 $\frac{1}{2}$ $*$ J ($-Cd$ – Cd) a $\frac{M_{0}}{T_{0}}$, are not resolvable.

The standard COSY pulse sequence [7] for N type peaks was used with phase cycling to remove unwanted axial and P type absorptions. The sweep width in both directions was ± 3500 Hz. The two-dimensional array was 2 K \times 1 K obtained by zero-filling the 128 \times 1 K experimental spectra.

Cd-Cd coupling satellites, and the groups of resonances for which intensity changes are correlated.

The chemical shift range for the new resonances indicates predominant (if not exclusive) coordination of Cd by S donors, and the coupling observed confirms the expectation from the stoichiometry that S-bridged polycadmium aggregates are present. At least three new aggregates are formed, and we are attempting to determine the compositions and structures of these species by use of enriched 113 Cd to allow full observation of the coupling patterns, and by crystallization and diffraction analysis.

Acknowledgements

We thank Dr. R. C. Brownlee for measurements at 44.4 MHz, Professor P. A. W. Dean for communication of results prior to publication, and the Australian Research Grants Scheme for financial support.

References

- (a) J. D. Otvos and I. M. Armitage, in B. D. Sykes, 1. (a) J. D. Otvos and I. M. Armitage, in B. D. Sykes, J. GIICKSON and A. A. BOUNDER-BY (eds.), Biochemical Siructure D (b) J. D. Otvos and I. M. Armitage,PToc. *Natl. Acad. Sci.,*
	- *U.S.A., 77, 1094* (1980). (c, <u>b, *A*, ,</u> //, /() y4 (1980).
 $($
	- *Chem., 257, 2427* (1982). (2) /, 242 /(1982).
Charles in Miklossy and D. R. Armitage, A. R. R. R.

(d) Y. Boulanger, J. M. Armitage, K. A. Mik Whinge, J. Biol. Chem., 257, 13717 (1982).

- (e) J. K. Nicholson, P. J. Sadler, K. Cain, D. E. Holt, M. Webb and G. E. Hawkes, Biochem. J., 211, 251 (1983).
- 2 R. A. Bulman, J. K. Nicholson, D. P. Higham amd P. J. Sadler, J. Am. Chem. Soc., 106, 1118 (1984).
- 3 K. S. Hagen and R. H. Holm, *Inorg. Chem.*, 22, 3171 (1983). (1983) , (1983) , (1983) , (1983) , (1983) , (1983) , (1983)
- *(a) A. Choy, D. Craig, I. G. Dance and M.* J. Chem. Soc., Chem. Commun., 1246 (1982). (b) I. G. Dance, A. Choy and M. L. Scudder, *J. Am. Chem.* Soc., 106, (1984).
- P. A. W. Dean and J. J. Vittal, private communication. k. A. w. Dean and J. J. Vittal, private communication.
*K. S. Y. S. H. S. H. H. H. H. H. H. H. Ch*em.
- *21, 3928* (1982).
- W. P. Aue, E. Bartholdi and R. R. Ernst, *J. Chem. Phys., 64, 2229* (1976).