Hydride Transfer from Transition Metal Hydrides to Dihapto Acyl Ligands

JOHN A. MARSELLA, JOHN C. HUFFMAN, KIRSTEN FOLTING and KENNETH G. CAULTON*

Department of Chemistry and Molecular Structure Center, Indiana University, Bloomington, Ind. 47405, USA Received April 9, 1984

Abstract

The dihapto acyl ligand in $Cp_2Zr[C(O)R]X$, (R = Me, Ph; X = Me, Cl) is subject to hydrogen transfer from Cp_2MH_2 (M = Mo, W), Cp_2ReH and CpRe- $H_4(PMe_2Ph)$. The initial products are bimetallic dimers of the type $Cp_2XZrOCH(R)ML_n$. The fate of this bimetallic species is highly dependent upon the Group VIB metal when Cp_2MH_2 is the hydride source. For M = Mo, a second hydrogen migrates to the acyl carbon, yielding $Cp_2Zr(OEt)Me$ and products derived from Cp_2Mo . For M = W, C-O bond scission occurs with retention of the W-C bond, to yield the carbene complexes $Cp_2W=C(H)R$ along with various oxyzirconium products. Filled d orbitals are not necessary on the hydride source; Cp_2NbH_3 also readily reduces the acyl in $Cp_2Zr[C(O)Me]Me$.

Introduction

Metal acyl complexes comprise one possible class of intermediates for chain growth in the hydrogenation of carbon monoxide (eqn. 1). Metal formyl complexes (R = H in eqn. 1) are thus to be considered in the initiation of chain growth, but the absence of any

unequivocal example of this reaction for a transition metal initially served to temper optimism for this mechanism. It has been argued [1] that the strength of the M-H ν s. C--H bond makes CO insertion into a M-H bond exergonic. On the other hand, any factor which would increase the stability of the formyl complex might overcome this problem. Dihapto binding, first discovered by Floriani [2] for acyl complexes, holds such a promise, and subsequently the first structurally characterized genesis of a formyl ligand from MH and CO involved dihapto (and bridging) binding to an oxophilic early transition metal [3].

While there was an intuitive notion that dihapto acyls ought to be 'activated' towards further hydrogenation relative to classical (monohapto) acyls, very little was actually known about the reactivity of these new acyls. The low infrared stretching frequencies $(\nu(CO) < 1600 \text{ cm}^{-1})$ [2], as well as the very far downfield (>300 ppm) [4] ¹³C chemical shifts for these η^2 -acyl carbons are consistent with a significant contribution by resonance structure **Ib** to the ground state electron distribution. Also attractive is the fact

that Ti and Zr dihapto acyls form rapidly from CO under mild conditions [2] (25 °C, 1 atm CO), so that the reduction of such an acyl is in essence a reduction of CO itself. We therefore undertook a study of the reaction of such acyls with H₂ and with a variety of transition metal hydrides of Groups VIB and VIIB. Such hydrides offer greater resistance to hydrolysis by H₂O, a likely Fischer-Tropsch product, than the hydrides of zirconium or titanium; they are therefore attractive metals as robust components of a catalytic cycle which produces water or alcohols. We have already reported the results of our attempted reduction of a dihapto acyl by BH₃ •THF [5]. Portions of the present work have been communicated [6, 7].

Experimental

The following complexes were synthesized using literature procedures: Cp₂Ti[η^2 -C(O)Me]Cl [2b], Cp₂MoH₂ [8], Cp₂WH₂ [8], Cp₂ReH [8], Cp₂ZrMe₂ [9], Cp₂Zr(Ph)₂ [9], Cp₂Zr[η^2 -C(O)Me]Me [2], Cp₂Zr(CO)₂ [10], [(CpMoH)₂(μ - η^1 : η^5 -C₅H₄)₂] [11], Cp₂Zr(Me)Cl [12], (Cp₂ZrCl)₂O [13], (Cp₂ZrO)₃ [14], Cp₂WH(Ph) [15]. All work was performed with rigorous exclusion of air and moisture, unless otherwise noted. CpReH₄(PMe₂Ph), CpReH₄(PPh₃) and CrReH₂(PMe₂Ph)₂ were available from other work in this laboratory [16]. Solvents were dried and purified

© Elsevier Sequoia/Printed in Switzerland

^{*}Author to whom correspondence should be addressed.

as follows: toluene, benzene, tetrahydrofuran and diethyl ether were vacuum distilled from their solutions of sodium benzophenone ketyl. Hexanes (a mixture of isomers) were vacuum distilled from sodium—potassium alloy. Halogenated solvents were dried over P_2O_5 and vacuum distilled, as were the deuterated solvents, C_6D_6 , C_7D_8 , CDCl₃ and CD₃CN. Manipulations were performed in a Vacuum Atmospheres dry box or on a Schlenk line equipped with a source of prepurified nitrogen.

Spectroscopy

Proton NMR spectra were obtained either on a Varian T-60, Varian XL-100, or Varian HR-220 spectrometer. ³¹P and ¹³C FT NMR spectra were obtained using the Varian XL-100-A spectrometer. Proton and carbon chemical shifts are reported relative to tetramethylsilane, and ³¹P chemical shifts are referenced to H₃PO₄ (downfield shifts are given positive values). Infrared spectra were recorded on a Perkin-Elmer Model 283 spectrometer. Solution spectra were obtained using 0.1 mm path length NaCl cavity cells fitted with airtight septa. Electron impact mass spectra were obtained either from a Varian CH 7 mass spectrometer at Indiana University or from regional facilities at Michigan State University or the University of Nebraska.

Reaction of $Cp_2 Ti[C(O)Me] Cl(1)$ with $Cp_2 MoH_2$

A mixture of 50 mg (0.2 mmol) 1 and 45 mg (0.2 mmol) Cp_2MoH_2 in toluene were stirred under N_2 at 25 °C for *ca.* eight hr. The resulting green solution was filtered and the toluene was stripped off, leaving a green residue. This residue was extracted with hexane (3 × 30 mL), from which a green oily solid was obtained upon solvent removal. Infrared and NMR (C₆D₆) analysis showed the presence of Cp_2MoCO [17] (4.18 δ) and Cp_2MoIC1 (*vide infra*). In some cases, *small* amounts of $Cp_2Mo(C_2H_4)$ [18, 19] were detected by ¹H NMR (in C₆D₆): 3.93 δ (10H), 1.43 δ (4H).

Cp₂MoHCl

A solution of 100 mg Cp₂MoH₂ in *ca.* 6 mL CH₂-Cl₂ was photolyzed for five hr. in a Pyrex Schlenk tube. The CH₂Cl₂ was vacuum removed and a red solid remained. Dissolving the red residue in toluene and eluting this solution through a silica gel column with THF led to the isolation of Cp₂MoHCl as a dark red crystalline solid. NMR (δ , C₆D₆): 4.52 (s, 10H), -8.38 (s, 1H). IR (Nujol): ν (M-H) = 1740 cm⁻¹. Mass spec: m/e = 263 corresponding to Cp₂⁹⁸-Mo³⁵Cl⁺. A green compound remained irreversibly bound to the column. The yields for this reaction varied greatly, with the best yield being 45 mg (39.1%). The analogous reaction in CHCl₃ is too rapid to be selective; green Cp₂MoCl₂ is produced.

Reaction of $Cp_2 Zr[C(O)Me]Me$ (2) with $Cp_2 MoH_2$

In toluene

A solution of 100 mg (0.4 mmol) Cp_2ZrMe_2 and 90 mg (0.4 mmol) Cp_2MoH_2 in 15 mL of toluene was stirred under 1 atm of CO. Within five minutes, the solution had turned dark green. The toluene was removed under vacuum and the flask was fitted with a sublimer. Sublimation was then attempted at 10^{-4} torr and 25 °C. After *ca*. five hr, the lower regions of the cold finger were coated with a dark green oil. This oil proved to be a mixture of Cp_2MoCO and Cp_2 -Zr(OEt)Me (4, *vide infra*). All attempts at separating the products of this reaction failed, but all products were readily identified from NMR tube reactions and by comparison of their spectra with those of independently prepared samples.

In CH₃CN

A solution of Cp₂MoH₂ (90 mg, 0.4 mmol) and Cp₂ZrMe₂ (100 mg, 0.4 mmol) in *ca.* 5 mL of CH₃-CN was treated with 1 atm of CO. An immediate color change took place. The solution was taken to dryness and the dark oily residue was dissolved in CD₃CN. The entire residue was soluble and Cp₂Zr-(OEt)Me (*vide infra*) appeared as the only zirconiumcontaining product. The molybdenum reaction products consisting of a 2:1 mixture of Cp₂MoCO (4.46 δ , ν (CO) = 1915 cm⁻¹) and Cp₂Mo(NCCH₃) [20] (4.41 δ and 2.68 δ , ν (CN) = 1780 cm⁻¹). An authentic sample of Cp₂Mo(NCCH₃) was made for comparison by photolysis of Cp₂MoCO in CH₃CN.

$Cp_2Zr(CH_3)(OCH_2CH_3)(4)$

A solution of 25 mg Cp₂ZrMe₂ (0.1 mmol) in C₆-D₆ was placed in an NMR tube. To this solution was added 6 μ L (0.1 mmol) of dry ethanol (from a fresh bottle of anhydrous ethanol), with immediate gas evolution resulting. NMR analysis showed nearquantitative conversion to 4. NMR (δ , in C₆D₆): 5.75 (s, 10H), 3.83 (q, 2H), 1.00 (t, 3H), 0.32 (s, 3H). In CD₃CN: 6.05 (s, 10H), 3.91 (q, 2H), 1.03 (t, 3H), -0.10 (s, 3H). The identity of the evolved gas was established as CH₄ by the resonance at 0.12 ppm (identical to authentic dissolved CH₄ in C₆D₆).

$Cp_2Zr[C(O)Me]Cl(3)$

A solution of 250 mg Cp₂ZrMeCl in *ca.* 3 mL of toluene was stirred under 1 atm of CO. A white precipitate formed within 15 min. Stirring was continued overnight and the mixture was filtered under N₂. The solid was washed with hexane, yielding 200 mg (73%) of a dull white powder. NMR (δ , in C₆-D₆): 5.48 (s, 10H), 2.25 (s, 3H). IR (Nujol): (ν (CO) = 1556 cm⁻¹).

Formation of $Cp_2(H)WC(H)(Me)OZr(Me)Cp_2$ (9a)

A solution of Cp_2WH_2 in C_6D_6 was treated with solid $Cp_2Zr[C(O)Me]Me$. The resulting spectrum showed the appearance of **9a.** The reaction is complete after *ca* 30 min. NMR (6, in C_6D_6): 5.83 (s, **10H)**, 5.40 (q, ${}^{3}J_{H-H} = 7$ Hz, **1H)**, 4.27 (d, ${}^{3}J_{H-H} < 1.0$ Hz, **5H)**, 4.20 (d, ${}^{3}J_{H-H} < 1.0$ Hz, **5H)**, 1.65 (d, ${}^{3}J_{H-H} = 7$ Hz, **3H)**, 0.20 (s, **3H)**, -10.8 (br, s, 1 H).

$Cp_2W(C_2H_4)$ (11) from 2 and Cp_2WH_2

Asolution of Cp_2WH_2 (120 mg, 0.4 mmol) and Cp_2ZrMe_2 (100 mg, 0.4 mmol) in 10 mL of toluene was stirred under 1 atm of CO for five hr. The solvent was removed, leaving a dark orange solid. The residue was sublimed to yield 90 mg of an orange crystalline solid. NMR analysis showed this solid to be a 2:1 mixture of $Cp_2W(C_2H_4)$ [19] and Cp_2WH_2 (corrected yield of 11 = 60 mg = 62%). NMR (δ , in C_6D_6): 3.95 (s, 10H), 0.80 (s, 4H, ²J_{W-H} = 5.1 Hz).

$Cp_2ReC(H)(Me)OZr(Me)Cp_2(8)$

A solution of 90 mg 2 (0.3 mmol) and 95 mg Cp₂ReH (0.3 mmol) in **ca**. 3 mL of toluene was allowed to stand for 24 hr. The initially yellow solution turned orange during this time period. Hexane (0.5 mL) was then added dropwise. After 48 hr orange needles had formed. The crystals obtained in this manner were identified by X-ray crystallography [21]. The yield (not optimized) was 60 mg (32%). ¹H NMR (6, in C₆D₆): 5.83 (s, 10H), 5.7 (q (7 Hz), 1H), 3.95 (s, 10H), 1.83 (d (7 Hz), 3H), 0.30 (s, 3H). ¹³C NMR (δ , in C₆D₆) from ¹³CO enriched synthesis: 59.5 (Re–CH(Me)O–), (d, ¹J_{C–H} = 140 Hz). E.I. mass spec.: m/e = 344 corresponding to [Cp₂¹⁸⁷Re-(C₂H₃)]⁺.

$Cp_2(H)WCH(Ph)OZr(Ph)Cp_2$ (9b)

Cp₂Zr(Ph)₂ (160 mg, 0.4 mmol) and Cp₂WH₂ (130 mg, 0.4 mmol) were dissolved in **ca**. 5 mL of toluene. The resulting solution was stirred under 1 atm of CO for 20 min. During this time, a color change from yellow to orange occurred. The solution **was** treated with 10 mL hexanes and allowed to stand for one h at which time a yellow solid had formed. Filtration gave 200 mg of 9b (70%). ¹H NMR (6, in C₆D₆): 7.1-7.8 (m, 10H), 6.77 (s, 1H), 5.92 (s, 5H), 5.77 (s, 5H), 4.23 (d, ³J_{H-H} < 1 Hz, 5H), 4.07 (d, ³J_{H-H} < 1 Hz, 5H), -11.2 (br, 1H, ¹J_{W-H} = 86 Hz). A ¹³C enriched sample (from ¹³CO) shows that the resonance at 6.77 and -11.2 are coupled to the methine carbon, ¹J_{C-H} = 140 Hz, ²J_{C-H} = 5.3 Hz. ¹³C NMR: δ 69 ppm (W-CH(Ph)O-), ¹J_{W-C} = 73 Hz.

*Cp*₂ *W*=*CHPh* (13)

A suspension of 200 mg 9b in 5 mL of toluene was heated to 75 °C for three hr to form a dark green solution and a gray powdery precipitate. The toluene was stripped, leaving a green oil. Extraction of this oil with hexane (ca. 75 mL) yielded a green solution. About half of the hexane was vacuum removed, at which time a white powder precipitated. Solvent removal was continued until a green solid just started to form. The remaining green solution was filtered and taken to dryness to yield 50 mg of a green solid (45%). This solid is **ca**. 95% pure by NMR. A purer sample may be obtained by recrystallizing from diethyl ether. Crystals suitable for crystallography were obtained from slow evaporation of a C₆D₆ solution. ¹H NMR (6, in C₆D₆): 10.82 (s, 1H), 7.02 (br, 5H), 4.65 (s, 5H), 4.58 (s, 5H). ¹³C NMR (6, in C₆D₆) of the product employing ¹³CO: 224 (d, ¹J_{C-H} = 131 Hz, ¹J_{W-C} = 141 Hz).

$[Cp_2ZrMe]_2O(10)$

A suspension of 1 .O g $[Cp_2ZrCl]_2O$ (1.9 mmol) in *ca*. 25 mL Et₂O was cooled to 0 °C and 2.9 mL of 1.3 *M* MeLi (3.8 mmol) diluted to 10 mL was slowly added with vigorous stirring. The white suspension turned light yellow and stirring was continued for *ca*. 45 min at 0 °C. The suspension was then filtered through Celite and the precipitate was washed with 5 mL of toluene. The combined Et₂O/toluene filtrate was taken to dryness to yield 400 mg of a light yellow solid (43%). In an alternative synthesis, white crystalline material was obtained by dissolving Cp₂-Zr(CH₃)₂ in wet CH₃CN. NMR (δ , in C₆D₆): 5.73 (s, 10H), 0.23 (s, 3H). In CDCl₃: 5.97 (s, 10H), 0.00 (s, 3H). E.I. mass spec.: m/e = 471 corresponds t o $[Cp_2^{90}Zr_2MeO]^+$. IR (Nujol): $\nu(Zr-O) = 740$ cm⁻¹.

Hydrolysis of $Cp_2Zr(Ph)_2$

Approximately 20 mg (0.05 mmol) of $Cp_2Zr(Ph)_2$ were dissolved in *ca.* 5 mL of THF and placed in an NMR tube. To this solution was added 1 μ L (0.06 mmol) of H₂O. NMR analysis showed the production of C₆H₆, as evidenced by a singlet at 7.23 6. The solution was taken to dryness to yield [Cp₂ZrPh]₂-0 [22]. NMR (δ , ppm, C₆D₆): 7.7-7.1 (m, 5H), 5.87 (s, 10H). IR (Nujol): ν (Zr-O) = 723 cm⁻¹.

Reaction of $CpReH_4(PMe_2Ph)$ with 2

A solution of CpReH₄(PMe₂Ph) and Cp₂ZrMe₂ in C₆D₆ was stirred at 25 °C under 1 atm of CO for three days. At this time, the NMR spectrum showed the formation of Cp₂Zr(OEt)Me. Also evident were resonances consistent with CpReH₂(CO)(PMe₂Ph): NMR (6 in C₆D₆): 4.58 (s, Cp), 1.68 (d, J = 9 Hz, Me), -10.17 (d, J = 50 Hz, ReH); phenyl protons were obscured by residual benzene. ³¹P{¹H} NMR: -20.0 δ (s, splits into a triplet upon hydride coupling).

Cp_2NbH_3 with 2

A solution of $Cp_2Zr[C(O)Me]Me$, 2, in C_6D_6 was treated with equimolar Cp_2NbH_3 to yield an intensely red solution. By NMR, this solution was seen to

contain $Cp_2Zr(OEt)Me$. No resonances attributable to Cp-Nb species were observed, and the spectra obtained showed considerable broadening. When the reaction was performed under one atm CO, significant amounts of $Cp_2(CO)NbCH(Me)OZr(Me)Cp_2$ (*vide infra*) were observed.

$Cp_2(CO)NbCH(Me)OZr(Me)Cp_2$

A solution of $Cp_2Nb(H)(CO)$ and Cp_2ZrMe_2 (1: 1) in C_6D_6 was treated with one atm CO. The initially red-brown solution immediately turned green. ¹H NMR examination indicated quantitative formation of $Cp_2(CO)NbCH(Me)OZr(Me)Cp_2$. NMR (6, in C_6D_6): 5.83 (s, 5H), 5.79 (s, 5H), 5.12 (q, 1H, J = 6.5 Hz), 4.68 (s, 5H), 4.63 (s, 5H), 1.62 (d, 2H, J = 6.5 Hz), 0.10 (s, 3H). IR: $(C_6D_6): \nu(CO) =$ 1894 cm⁻¹.

X-ray Structure Determination of Cp₂ WC(H)Ph

Crystal data and parameters of the data collection (at -160 °C, $5 \le 2\theta \le 50$ °) are shown in Table I. Crystal handling prior to and during data collection

TABLE I. Crystal Data for (C₅H₅)₂WC(H)(C₆H₅).

Formula	C17H16W
Color	Emerald green
Crystal dimensions (mm)	0.08 X 0.08 X 0.08
Space group	Pcab
Cell dimensions (at -160. C; 5lreflect.)	eab
a	13.967(4) A
b	11.286(3)
c	16.327(4)
Molecules/cell	8
Volume	2573.7
Calculated density (gm/cm ³)	2.086
Wavelength	0.71069 A
Molecular weight	404.16
Linear absorption coefficient	91.5
Number of reflections collected	3561
Number of unique intensities	1686
Number with $F > 0.0$	1420
Number with $F > sigma (F)$	1247
Number with $F > 2.33$ sigma (F)	1075
Final residuals	
R(F)	0.0529
Rw(F)	0.0483
Goddness of fit for the last cycle	1.026
Maximum Δ/σ for last cycle	0.05

was carried out in a nitrogen atmosphere; data collection and processing techniques have been described [23]. The largest variation among four standard reflections was 0.4 σ . Two complete data sets were collected, the first (from the larger crystal) being used to solve the structure by direct and Fourier methods. Attempts at introducing anisotorpic thermal parameters for carbon atoms yielded non-positive definite parameters for several carbons, even with correction for absorption. The second complete data set (using a smaller, nearly equidimensional crystal) also yielded unacceptable anisotropic temperature factors for several carbons. The final model chosen (results reported here, using second crystal) employed anisotropic refinement of tungsten only. Hydrogen atoms were neither located nor included in calculated positions. The final difference Fourier was essentially featureless, the major peaks being in the vicinity of the tungsten atom. Difference Fourier sections through the planes of the Cp rings gave no evidence for any resolvable disorder.

The results of the X-ray study are shown in Tables II and III and in Figs. 2 and 3. Cp ring carbons are coplanar to within 1 cr. Phenyl carbons are coplanar to within 1.7 σ , and the carbene carbon (C2) lies within 1 σ of the phenyl plane. The Cp two ring centroids, W and C2 deviate from their mutual least squares plane by less than 1 σ . Metal to ring-midpoint lines intersect the ring planes at angles of 88.2" and 88.7". The phenyl ring plane makes an angle of 77.9" with the plane of Cp(1), Cp(2), W and C2. For full detail of the structural study, write Chemistry Library, Indiana University, requesting Molecular Structure Center report number 81017.

TABLE II. Fractional Coordinates and Isotropic Thermal Parameters for Cp₂WC(H)Ph.

	$10^4 x$	$10^4 v$	$10^4 z$	IO B _{iso}
W	2236(1)	1177(1)	2581.9(5)	10
C(2)	2469(18)	1410(20)	1353(13)	19(5)
C(3)	3229(20)	1956(23)	892(14)	18(5)
C(4)	4083(20)	1259(27)	697(15)	29(5)
C(5)	4830(22)	1828(26)	244(16)	26(6)
C(6)	4734(19)	2974(25)	-53(15)	24(6)
C(7)	3888(20)	3610(23)	96(14)	24(5)
C(8)	3107(19)	3053(23)	548(14)	20(5)
C(9)	3878(17)	1417(20)	2662(14)	17(5)
C(10)	3587(17)	723(21)	3368(13)	12(4)
C(11)	2980(17)	1489(20)	3814(12)	13(4)
C(12)	2843(19)	2621(22)	3407(13)	20(5)
C(13)	3436(17)	2592(21)	2700(14)	19(4)
C(14)	1049(17)	-50(21)	2084(13)	14(5)
C(15)	1327(16)	-433(19)	2877(12)	9(4)
C(16)	1078(19)	447(23)	3418(15)	17(5)
C(17)	629(20)	1434(23)	3039(15)	23(5)
C(18)	666(18)	1100(23)	2147(13)	18(4)

Results and Discussion

While the acyl complexes employed here do not react with molecular hydrogen at 25 °C and 1 atm, heterobimetallic hydrogen transfer from a variety of Group V-VIIB hydride occurs readily. As described earlier [6] several iron or cobalt η^{1} -acetyl complexes are not reduced by these same hydride complexes, so the Lewis acid function of early transition metals in η^2 -acyl ligation performs an essential role.

The first dihapto acyl investigated was Cp_2Ti -[C(O)Me]Cl (1). This complex was found to be unreactive toward H_2 at room temperature in THF

Cp, M
$$\leftarrow$$
 0
Cp, M \leftarrow 0
CH₃ 1 M = Ti, X = Cl
2 M = Zr, X = CH₃
3 M = Zr, X = Cl

and at 80 °C in toluene. Stirring for long periods of time under H_2 in both cases led only to decarbonylation to $Cp_2Ti(Me)Cl$. Attempts to reduce 1 using NaBH₄ or BH₃•THF yielded uncharacterized species whose color and lack of NMR signal indicated reduction to Ti(III) had taken place. Attempts to effect hydride transfer utilizing Cp_2MoH_2 again led to disappearance of NMR-observable titanium species along with the formation of a mixture of molybdenum complexes, among which were identified Cp_2MoCO and Cp_2MoHC1 . In some experiments, a small amount of $Cp_2Mo(C_2H_4)[17-19]$ was detected.

The above evidence for undesirable reduction of Ti(IV) and for halide transfer in the attempted hydrogenation of the acyl in 1 led us to examine the zirconium acyl complex 2. Not only in this complex free of chloride ligand, but Zr(IV) is more resistant to reduction than is Ti(IV)[24]. Indeed Cp₂Zr[C-(O)Me]Me (2) was found to react smoothly with Cp2MoH2 at 25 °C to form Cp2Zr(OCH2CH3)CH3 (4). Neither methane nor acetaldehyde are detectable products. There appeared to be two major molybdenumcontaining products formed. The predominant one was immediately identified as Cp₂MoCO. The ¹H NMR spectrum of the other Mo complex showed resonances indicative of both π bound (pentahapto) and σ bound (monohapto) cyclopentadienyl ligands. Comparison of this spectrum with that obtained from an independently synthesized sample showed this complex to be $\{[(\eta^5 - C_5 H_5)Mo]_2 [\mu - (\eta^1 - \eta^5 - C_5 H_4)]_2\}$ (5) [11]. It was found that hydrides 6 [11] and 7 [11], each of which is a source of 5 under other reaction conditions (vide infra), were unreactive toward 2 under conditions where 2 reacts with Cp₂MoH₂; 6 and 7 thus cannot be intermediates in the reaction.

When the reaction was performed under N_2 , a substantial amount of Cp_2ZrMe_2 was produced, in addition to the products noted above. Conversely, performing the reaction under one atm of CO led to complete conversion (NMR evidence) of acyl 2 to $Cp_2Zr(OEt)Me$, 4. Similar results were obtained when solutions of Cp_2ZrMe_2 and Cp_2MoH_2 were treated with CO [25].

The production of $Cp_2Zr(OEt)Me$ from the equimolar reaction of $Cp_2Zr[C(O)Me]Me$ and Cp_2-MoH_2 suggests the possible intermediacy of Cp_2Mo , 'molybdenocene'. The chemistry of molybdenocene generated by other means is now well documented and the variety of molybdenum products observed here are consistent with its known high reactivity [11]. For example, we find that in hydrocarbon solvents, the molybdenocene fragment is scavenged either by acyl complex 2 or by Cp_2MoH_2 . These results are detailed in Scheme I. With 2, decarbonylation to Cp_2ZrMe_2 occurs with simultaneous formation of Cp_2MoCO . With Cp_2MoH_2 , dimerization

Scheme 1

occurs to ultimately produce complex 5. It should be noted that the formation of complex 5 indicates delivery of three moles of H_2 to the acyl ligands for every two moles of Cp_2MoH_2 consumed. This stoichiometry is in line with our observation that more than one mol of ethoxide is formed for every mol of Cp_2MoH_2 that is consumed [6]. The extra reducing power derives from active involvement of the Cp rings and ultimate transfer of hydrogen from these rings to the acyl moiety. Compound 14 is included in Scheme I as a proposed bimetallic intermediate corresponding to transfer of one hydride from molybdenum to the acyl carbon (see later).

The foregoing describes the fate of molybdenocene in hydrocarbon solvents. We find that the fragment 'Cp₂Mo' exhibits different selectivity in coordinating solvents. For example, a stirred solution of Cp_2ZrMe_2 and Cp_2MoH_2 (each 0.08 *M*) under one atm of CO yields Cp₂MoCO as the predominant Mo product even in neat CH₃CN. Only 25% of the molybdenum is found as Cp₂Mo(NCCH₃) under these conditions. A dramatic change occurs upon performing the same reaction under only 0.1 atm CO since carbonylation of Cp₂ZrMe₂ is now slower than the reaction of the acetyl complex with Cp₂MoH₂. In this case, the mol ratio Cp₂MoCO:Cp₂Mo(NCCH₃) is 1:2. The yield of ethoxide 4 in both cases is nearly quantitative. Thus, by maintaining a low concentration of the acyl complex, the scavenging of molybdenocene by solvent is favored. Interestingly, Cp2- MoH_2 is unable to compete with solvent for Cp_2Mo , since no observable amounts of the dimeric Mo complex 5 are seen in acetonitrile solvent.

The reaction proceeded similarly when Cp₂Zr- $[C(O)CH_3]Cl$ (3) reacted with Cp_2MoH_2 . There was no evidence of chloride transfer to molybdenum as was seen using Cp₂Ti[C(O)Me]Cl. A characteristic of this reaction was that more of the dehydrogenated dimer 5 was formed; correspondingly less Cp₂MoCO was formed. A corollary observation is that not only Cp₂Zr(OCD₂CH₃)Cl, but also Cp₂Zr(OCHDCH₃)Cl was produced when Cp₂MoD₂[26] was used as the reducing agent. Cp₂Zr(OCHDCH₃)Cl was evident as a doublet ^fH NMR (220 MHz) methyl resonance flanking the central pseudosinglet of Cp₂Zr(OCD₂-CH₃)Cl. The P-hydrogen in Cp₂Zr(OCHDCH₃)Cl originates from the Cp ring on molybdenum, and accounts for the observed enhancement of ethoxide produced relative to Cp₂MoH₂ employed when $Cp_2Zr[C(O)CH_3]Cl$ is the substrate.

Scheme 2

It is not immediately apparent why complex 3 leads to more Mo_2 dimer (5) than does 2. The smaller yield of Cp_2MoCO when using the chloride acyl 3 is not consistent with the independent observation [27] that 3 is more easily decarbonylated than 2 (eqn. 2, $K_{Cl} > K_{Me}$). These results rule out the possibility that Cp_2MoCO is formed from scavenging

$$Cp_2Zr(Ac)X \stackrel{K}{\longleftrightarrow} Cp_2ZrMeX + CO$$
(2)
X = Me, 2 x = Cl, 3

free CO formed in eqn. 2. In fact, these results suggest that Cp_2MoCO is formed by direct decarbonylation of the acyl species, and this has therefore been incorporated into Scheme I.

The lack of reactivity of the dimeric molybdenum hydrides 6 and 7 with 2 is of significance with regard to the 'intermediate molybdenum hydrides' noted in Scheme I. Scheme II shows some chemistry of molybdenocene as determined by Berry *et al.* [11]. Since neither 6 nor 7 react with 2, some previously unobserved reactive intermediate must form in the presence of Cp_2MoH_2 *before* complex 6 is formed. One such pathway is proposed in eqn. 3. The demonstrated ability of Cp rings to couple, but subsequently cleave (7 \rightarrow 5 in Scheme II) is reassuring in light of the complicated chemistry required for eqn. 3.

Fig. 1. Molecular structure of Cp₂MeZr(OCHMe)ReCp₂.

Hydride Transfer from Metal Hydrides

of this complex exhibits a very strong band at 1030 cm⁻¹, consistent with a single bond carbon-oxygen stretch. At 60 MHz, this complex shows only a single resonance for protons on the inequivalent (diastereotopic) Cp rings on zirconium [28]; however, at 220 MHz, the resonance at 5.83 δ can be resolved into two peaks separated by 0.0016 ppm. Both rhenium and hydrogen are added to the acetyl carbon to form 8 (eqn. 4). Geminal addition of the M'-H bond to a coordinated ligand (eqn. 5) is a reaction which has not been carefully documented to date. In fact, eqns.

$$M \left[\begin{array}{c} Y \\ X \end{array} \right] + M' - H \longrightarrow M' - X H$$
 (5)

4 and 7 (see below) may not represent elementary steps and the geminal addition product may not be the primary one. The work of Floriani [29] and of Schwartz [30] shows that a bridging 'aldehyde' moiety undergoes rapid degenerate rearrangement

(eqn. 6) when $M = M' = Cp_2ZrCl$. It is therefore possible that, if acyl hydrogenation initially produces **II** by vicinal additon across the C...O bond, such a kinetic product could rapidly rearrange to the observed (thermodynamic) product.

$$C_{P_2}Zr = \begin{pmatrix} M_{P_2} \\ O - M_{P_2} \\ \chi \\ \Pi \end{pmatrix}$$

An attempt was next made to capitalize on the enhanced stability of third row transition metal complexes (relative to second row analogs) in order to detect an analog of 8 for a dihydride complex. With Cp_2WH_2 , the bimetallic hydride 9a is indeed detectable (eqn. 7). This complex is the direct analogue of the postulated intermediate 14 (Scheme I), and a rather rare example of a *cis*-hydridoalkyl complex. This reaction was characterized by a color change

from yellow to orange. Complex 9a showed considerable instability and was never isolated. Its decomposition followed promptly after its formation, to yield $[Cp_2Zr(CH_3)]_2O$ (10) and $Cp_2W(\eta^2-C_2H_4)$ (11). The use of ¹³CO led to carbon-13 incorporation in the ethylene ligand of 11 to produce the non-firstorder ¹H NMR [31] of coordinated $H_2^{13}C^{12}CH_2$. Additional resonances were observed in the zirconium cyclopentadienyl region as reaction 8 proceeded and the ¹H NMR resonances of methane and cyclopenta-

$$g_{a} \longrightarrow \left[Cp_{2}ZrMe \right]_{2}O + Cp_{2}W \leftarrow \parallel + \cdots \\ CH_{12} \\ 10 \\ 11 \\ (8)$$

diene also appeared. The resonance of $(Cp_2ZrO)_3$ [14] was not present. Similar resonances were observed when either Cp_2ZrMe_2 or $(Cp_2ZrMe)_2O$ was hydrolyzed. By proton NMR, the formation of **11** was nearly quantitative, while 10 accounted for approximately two-thirds of the original zirconium cyclopentadienyl peak intensity.

Periodic spectroscopic monitoring of the course of eqn. 8 allowed detection of an intermediate (12) whose two C_5H_5 resonances appear in the region characteristic of biscyclopentadienyl tungsten complexes. These closely spaced resonances at 4.59 δ and 4.63 δ were accompanied by a doublet at 1.03 δ (J = 6 Hz), and a quartet at 10.3 δ (J = 7 Hz) with the relative intensities being 5 :5:3: 1. The far downfield quartet at 10.3 δ is in the region usually associated with α -hydrogens on metal carbenes[32] and we assign the structure shown to 12. Complex 12 rearranges quickly (minutes) to the ethylene complex 11

$$Cp_2W = c \begin{pmatrix} H \\ CH_3 \end{pmatrix}$$

[33]. The mechanism of formation of the oxobridged zirconium dimer 10 in eqn. 4 is not clear. A heterolytic mechanism, passing through the ion pair $\{Cp_2WH(CHMe)^+, Cp_2Zr(Me)O^-\}$, has been briefly discussed [7]. However, in the light of recent work by Erker [34], homolysis to the radicals $Cp_2W(H)$ -(CHMe) and $Cp_2Zr(Me)O$ cannot be excluded. Our attempts to scavenge any **free** radicals in reaction 8 with 1,4-cyclohexadiene were unsuccessful.

The 1,2 hydrogen shift in the isomerization $12 \rightarrow 11$ is unusual, but not unprecedented [35]. It is possible to prevent this rearrangement, and thus isolate a Cp₂W(carbene) complex analogous to 12. Reaction of Cp₂Zr [C(O)Ph] Ph (prepared *in situ* from Cp₂Zr(Ph)₂ and CO) with Cp₂WH₂ yields the expected bimetallic complex 9b. Thermolysis of 9b in C₆D₆ at 70 °C for three hr. (or 100 °C for 15 min) leads to the formation of a green solution from which carbene complex 13 can be isolated (eqn. 9). Proton and ¹³C

NMR of 13 were consistent with the formula shown. As with **9a**, the reaction yields a complex mixture of zirconium products (none of which is $[Cp_2ZrPh]_2O$), but it is clean with respect to tungsten, and crystals of 13 suitable for X-ray diffraction can be obtained.

$$\mathbf{g}_{\mathbf{b}} \longrightarrow \mathbf{C}_{\mathbf{p}_{2}}\mathbf{W} = \mathbf{C}_{\mathbf{p}_{b}}^{\mathbf{H}} + \dots$$
 (9)

Figure 2 shows an ORTEP drawing of 13. The orientation of the carbene ligand is such that the cyclopentadienyl rings are inequivalent, consistent with the NMR spectra of both 12 and **13.** This orientation of the carbene plane (within 6.3" of coplanarity with W and the two ring midpoints) is in accord with published molecular orbital calculations [36] and is identical to that found [37a] in Cp₂W=C(H)-OZr(H)(C₅Me₅)₂, 16. Table III shows some pertinent bond lengths and angles. The W-C bond distance for the carbene is 2.05(2) A, comparable to 2.00(1) in 16 and significantly shorter than the W-C

Fig. 2. ORTEP drawing of $(\eta^5-C_5H_5)_2WC(H)C_6H_5$. The hydrogen atoms, including the single hydrogen known to be on C(2) from NMR data, are not shown. Unlabeled carbons follow the sequence indicated by those which are labeled.

TABLE	III.	Bond	Distances	(A)	and	Selected	Bond	Angles
(deg) in	Cp ₂	W = CI	H(Ph).					

W	C(2)	2.05(2)		
W	C(9)	2.31(2)	C(9) C(10)	1.45(3)
W	C(10)	2.34(2)	C(9) C(13)	1.46(3)
W	C(11)	2.29(2)	C(10) C(11)	1.41(3)
W	C(12)	2.28(2)	C(11) C(12)	1.45(3)
W	C(13)	2.32(2)	C(12) C(13)	1.42(3)
		avg. 2.31	avg	g. 1.44
W	C(14)	2.31(2)	C(14) C(15)	1.42(3)
W	C(15)	2.27(2)	C(14) C(18)	1.41(3)
W	C(16)	2.27(2)	C(15) C(16)	1.37(3)
W	C(17)	2.38(3)	C(17) C(16)	1.42(4)
W	C(18)	2.31(3)	C(17) C(18)	1.50(3)
		avg. 2.35	avg	g. 1.42
C(2)	C(3)	1.44(4)		
C(3)	C(4)	1.46(4)		
C(3)	C(8)	1.37(4)		
C(4)	C(5)	1.43(4)		
C(5)	C(6)	1.39(4)		
C(6)	C(7)	1.40(4)		
C(7)	C(8)	1.46(4)		
		avg. 1.42		
Cp(1) ^a	W	Cp(2)	143.3"	
Cp(1)	W	C(2)	109.1	
Cp(2)	W	C(2)	107.6	
W	C(2)	C(3)	133(2)	

^aDefined as the center of the Cp ring made up of C(9)-C(13).

distance of 2.15(2) reported for $(CO)_5W=C(Ph)_2$ [37b]. The Cp-W-Cp angle of 143.3' is again large, as it is for the Cp₂Re fragment in 8. It should be noted that both complexes are formally d⁴, but the electronic requirements of the carbene ligand may account for the slightly smaller angle in **13**, which indicates decreased electron density about the metal. Drawings of space-filling models (Fig. 3) reveal the

Fig. 3. Stereoscopic space-filling drawing of $Cp_2WC(H)Ph$, with all hydrogens in calculated positions (taking a C-H distance of 1.08 A).

Hydride Transfer from Metal Hydrides

steric origin of the phenyl ring conformation to be Cp/Ph contacts.

The difference in reactivity between Cp₂WH₂ and Cp₂MoH₂ (more specifically, between bimetallic complexes 9 and 14) is striking. Complex 14 reacts further by rapid reductive elimination of the ethoxide 4 (Scheme I), while complexes 9a and 9b react via cleavage of the carbon-oxygen bond (eqn. 8). This difference can be attributed to the relative stabilities of molybdenocene and tungstenocene. Tungstenocene is much more reactive (thus of presumably higher energy) than is molybdenocene. In fact, recall that Cp₂Mo generated here scavenges CO in both benzene and acetonitrile, *i.e.*: it survives long enough to display selectivity. In contrast, in reactions where it is formed, tungstenocene almost always reacts with solvent [38]; it displays less discrimination (hence higher reactivity) than molybdenocene. The stability of higher oxidation states for third row metals relative to their second row analogues is quite consistent with this reasoning. Thus, reductive elimination from Mo(IV) is more facile than from W(IV).

A number of other transition metal hydrides were screened for hydrogen transfer activity. Complex 2 was also found to react with CpReH₄(PMe₂Ph). The products of this reaction, under one atm CO, were Cp₂Zr(OEt)Me and the rhenium complex CpReH₂-(CO)(PMe₂Ph). No reaction was observed between 2 and CpReH₂(CO)(PMe₂Ph). Likewise, CpReH₄-(PPh₃), CpReH₂(PMe₂Ph)₂, and Cp₂W(H)Ph did not transfer hydride to the acyl ligand in 2.

The oxycarbene resonance form (Ib) shows clearly that the carbon of a η^2 -acyl bound to a d⁰ metal center should be quite electrophilic. In view of the fact that all hydride complexes successful in reducing these η^2 -acyls possess filled and sterically accessible nonbonding d orbitals, we were attracted to a mechanism for all such reactions which is initiated by nucleophilic attack on the acyl carbon by a metal lone pair (eqn. 10).

This line of reasoning led us to examine Cp_2NbH_3 , a d⁰ complex, for hydrogen transfer to $Cp_2Zr[C(O)-Me]Me$. If eqn. 10 accurately represents the initial interaction between the reactants, Cp_2NbH_3 should be an ineffective hydrogen transfer reagent. The observation that these complexes react readily to give $Cp_2Zr(OEt)Me$ and $Cp_2Nb(H)CO$ destroys the mechanistic proposal of eqn. 10, and brings us to the simpler mechanism of direct hydrogen transfer to the acyl carbon, by transition state III.

Conclusion

Dihapto zirconium acyls react smoothly with a number of transition metal hydrides. The ultimate products depend on the hydride used, with reduction of the acyl carbon (originally introduced as carbon monoxide) proceeding either to the olefinic or to the alcoholic oxidation level. The initial product can be viewed as insertion of a carbene carbon into a transition metal-hydrogen bond, but the mechanism is most consistent with direct attack by metalbound hydrogen on the acyl carbon. This work represents the first detailed study of acyl group reduction utilizing transition metal hydrides that are only mildly hydridic. Although we were successful in demonstrating the reducing power of 'later' (ie.: Group VI) transition metal hydrides, all reactions reported here share the undesirable feature of forming Zr-0 bonds, Catalytic hydrogenation of CO will require a different strategy for activation of the CO moiety; we are therefore looking later in the transition series [39].

Acknowledgements

This work was supported by the National Science Foundation (Grant No. CHE 80-06331) and by the M. H. Wrubel Computer Center. J. A. Marsella acknowledges a fellowship from the Lubrizol Foundation. Professor J. Schwartz provided a useful mechanistic suggestion.

References

- D. A. Slack, D. L. Egglestone and M. C. Baird, J. Organomet. Chem., 146, 71 (1978).
- 2 a) G. Fachinetti, G. Fochi and C. Loriani, J. Chem. Soc., Dalton Trans., 1946 (1977).
 b) G. Fachinetti, C. Floriani and H. Stoeckli-Evans,
- J. Chem. Soc., Dalton Trans., 2297 (1977).
- 3 M. R. Churchill and H. J. Wasserman, J. Chem. Soc., Chem. Comm., 274 (1981) and references therein.
- 4 a) M. F. Lappert, N. T. Luong-Thi and C. R. C. Milne, J. Organomet. Chem., 174, C35 (1979).
 b) G. Erker and F. Rosenfeldt, Angew. Chem. Znt. Ed.,
- b) G. Erker and F. Rosenfeldt, Angew. Chem. Znt. Ed., 17,605 (1978).
 5 J. A. Marsella and K. G. Caulton, J. Am. Chem. Soc.,
- 5 J. A. Marsella and K. G. Caulton, J. Am. Chem. Soc., 104, 2361 (1982).

- 6 J. A. Marsella and K. G. Caulton, J. Am. Chem. Soc., 102, 1747 (1980).
- 7 J. A. Marsella, K. Folting, J. C. Huffman and K. G. Caulton, J. Am. Chem. Soc., 103, 5596 (1981).
- 8 R. B. King, 'Organometallic Syntheses', Academic Press, New York (1965); pp. 79-81.
- E. Samuel and M. D. Rausch, J. Am. Chem. Soc., 95, 6263 (1973).
- 10 D. J. Sikora, M. D. Rausch, R. D. Rogers and J. L. Atwood, J. Am. Chem. Soc., 103, 1265 (1981).
- M. Berry, N. J. Cooper, M. L. H. Green and S. J. Simp-11 son, J. Chem. Soc., Dalton Trans., 29 (1980).
- 12 P. C. Wailes, H. Weigold and A. P. Bell, J. Organometal. Chem., 34,155 (1972).
- 13 P. C. Wailes, H. Weigold, in 'Inorganic Syntheses', Volume XIX, D. Shriver, Ed., Wiley, New York (1979), pp. 223-227.
- 14 G. Fachinetti, C. Floriani, A. Chiesi-Villa and C. Guastini, J. Am. Chem. Soc., 101, 1767 (1979).
- 15 B. R. Francis, M. L. H. Green, T. Luong-Thi and G. A. Moser, J. Chem. Soc., Dalton Trans., 1339 (1976)
- 16 M. A. Green, J. C. Huffman, K. G. Caulton, W. K. Rybak and J. J. Ziolkowski, J. Organometal. Chem., 218, C39 (1981)
- 17 a) H. H. Brintzinger and J. L. Thomas, J. Am. Chem. Soc., 94, 1386 (1972). b) F. W. S. Benfield, B. R. Francis and M. L. H. Green.
- J.' Organometal. Chem., 44, Cl3 (1972)
- 18 J.L. Thomas, J. Am. Chem. Soc., 95, 1838 (1973).
- W. S. Benfield and M. L. H. Green, J. Chem. Soc., Dalton Trans., 1324 (1974).
- 20 J. L. Thomas, J. Am. Chem. Soc., 97, 5943 (1975).
- 21 J. A. Marsella, J. C. Huffman and K. G. Caulton, A.C.S. Sym. Ser., 152, 35 (1981).
- 22 E. M. Brainina. G. C. Dvorvantseva and R. K. Freidlina. Dokl. Akad. Nauk, SSSR, 156, 1375 (1964).
- 23 J. C. Huffman, L. N. Lewis and K. G. Caulton, Znorg. Chem., 19, 2755 (1980).
- 24 P. C. Wailes, R. S. P. Coutts and H. Weigold, 'Organometallic Chemistry of Titanium, Zirconium and Hafniurn', Academic Press, New York (1974).

- 25 Because of the facile carbonylation of Cp₂ZrMe₂ to Cp₂-Zr[C(O)Me]Me, hydrogen transfer reactions were often performed by treating a solution containing Cp2ZrMe2 and the metal hydride with one atm CO. We have established that the metal hydrides and metal alkyls employed here do not react with one another in the absence of CO at 25 "C.
- 26 M. L. H. Green, J. A. McCleverty, L. Pratt and G. Wilkinson, J. Chem. Soc., 4854 (1961).
- J. A. Marsella, K. G. Moloy and K. G. Caulton, J. Orga-27 nometal. Chem., 201,389 (1980).
- 28 For all of the mixed metal dimers examined here, the Cp chemical shifts fall in distinct regions characteristic of coordination, in one case, to Mo or W and, in the other case, to the metal which supplied the hydride equivalents. We have not observed a case where these regions overlap significantly.
- 29 G. Fachinetti, C. Floriani, A. Roselli and S. Pucci, J. Chem. Soc., Chem. Comm., 269 (1978).
- K. I. Gell, G. M. Williams and J. Schwartz, J. Chem. Soc., Chem. Comm., 550 (1980).
- 31 R. M. Lynden-Bell and N. Sheppard, Proc. Roy. Soc. (London), 269,385 (1962).
- R. R. Schrock, Acc. Chem. Res., 12, 98 (1979).
- Compare M. Ephritikhine and M. L. H. Green, J. Chem. 33 Soc., Chem. Comm., 926 (1976).
- 34 G. Erker and F. Rosenfeldt, *Tet. Lett.*, 22, 1379 (1981).
 35 a) C. P. Casey, L. D. Albin and T. J. Burkhardt. J. Am. Chem. Soc., 99, 2533 (1977). b) E. O. Fischer and W. Held, J. Organometal. Chem.,
- 112, C59 (1976)
- 36 J. W. Lauher and R. Hoffmann, J. Am. Chem. Soc., 98, 1729 (1976). 37 a) P. Wolczanski, R. Threlkel and J. Bercaw. J. Am.
- Chem. Soc., 101,218 (1979). b) C. P. Casey, T. J. Burkhardt, C. A. Bunnell and J. C. Calabrese, J. Am. Chem. Soc., 99, 2127 (1977)
- M. Berry, K. Elmitt and M. L. H. Green, J. Chem. Soc., 38 Dalton Trans., 1950 (1979) and references cited therein.
- G. V. Goeden and K. G. Caulton, J. Am. Chem. Soc., 39 103, 7354 (1981).